М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nicorobincom
nicorobincom
10.06.2021 11:06 •  Математика

На одной полке стояло x книг,а на второй- в 4 раза больше.когда со второй полки переставили на первую 21 книгу,то книг на полках стало поровну. 1.число книг на второй полке первоначально; 2.число книг на второй полке,после того как оттуда убрали 21 книгу; 3.число книг на первой полке,после того как туда поставили 21 книгу. найдите равные величины и составте уравнение- модель данной ситуации. !

👇
Ответ:
ElDiablo1337
ElDiablo1337
10.06.2021
Х+21=4х-21
х-4х=-21-21
3х=42
х=42:3
х=14
1)4*14 = 56
2)56-21=35
3)14+21=35
И опять таки я точно не знаю)
4,7(84 оценок)
Открыть все ответы
Ответ:
Haesiy
Haesiy
10.06.2021
Легенда. Приведу свой пример. Выросла я в пригороде Краснодара, в поселке Тлюстенхабль. Мой дед был интересным рассказчиком, и я с удовольствием слушала различные байки, которых в запасе у него было немерено. Например, там, где расположен поселок, раньше был лес, и в переводе с адыгейского окрестности назывались «место, где кормится волк». А первым человеком, поселившимся на опушке, был мужчина по имени Тлюстен, отсюда название и пошло. Однако позже, когда поселение расширилось, его стали называть Султанским хутором. Потому что проживали здесь несколько княжеских семей. Но самыми именитыми были Хан-Гиреи, им большая часть села и принадлежала. А глава семьи Султан Хан-Гирей состоял на службе у Николая Второго. Но суть не в этом. Семья моего деда попала в эти места случайно. Его предки Бачемуковы жили в горах. Однако во время Кавказской войны был убит его прадед. А молодая жена осталась одна с двумя сыновьями на руках. У братьев овдовевшей женщины созрел злой замысел - детей продать в рабство туркам, а сестру, которая слыла красавицей, удачно выдать замуж. Об этом прознала одна из родственниц убитого, которая проживала в Султанском хуторе. Тайком вывезла невестку с племянниками и поселила у себя. С тех пор почти 200 лет. В детстве я не понимала, почему по дедушкиной линии у нас так мало родственников, ведь у адыгов, как правило, многочисленные семейства. Это предание удовлетворило мое любопытство и, став взрослее, я рассказала об этой истории в одной из газет, где проходила практику. Я уже и забыла про этот материал, когда однажды в дом моего деда целая делегация из Шовгеновского района… Оказывается, это потомки той семьи, из которой два века назад увезли в Тлюстенхабль женщину с двумя сыновьями. Они тоже носят фамилию Бачемуковы. Они, прочитав мою заметку, решили познакомиться с потерянным родственником. Так мой дед, как и полагается любому черкесу, обрел многочисленную семью.
4,8(23 оценок)
Ответ:
karinaflyg
karinaflyg
10.06.2021

ответ:а) Обозначим (Ж, З, К) упорядоченную тройку чисел, характеризующую состояние мешка на данный момент, т.е. количество жёлтых, зелёных и красных шаров в мешке. Изначально мешок находится в состоянии (1, 1, 2).

Если в первый раз из мешка вынимают жёлтый и зелёный шар и заменяют их красным шаром, то мешок переходит в состояние (0, 0, 3), когда все шары в мешке — красные. Если в первый раз из мешка вынимают зелёный и красный шар и заменяют их жёлтым шаром, то мешок переходит в состояние (2, 0, 1). Дальнейшие переходы из одного состояния в другое определяются однозначно и описываются цепочкой: (2, 0, 1)→(1, 1, 0)→(0, 0, 1) Видим, что в мешке остался красный шар. Аналогично, если в первый раз из мешка вынимают жёлтый и красный шар и заменяют их зелёным шаром, то мешок переходит в состояние (0, 2, 1). Дальнейшие переходы из одного состояния в другое определяются однозначно и описываются цепочкой: (0, 2, 1)→(1, 1, 0)→(0, 0, 1).

Видим, что в мешке снова остался красный шар. Таким образом, в любом случае оставшиеся в мешке шары (или шар) будут красными.

б) Легко видеть, что в мешке могут остаться зелёные шары: (3, 4, 5)→(4, 3, 4)→(3, 4, 3)→(2, 5, 2)→(1, 6, 1).

Докажем, что в любом случае оставшиеся в мешке шары будут зелёными. Так как каждый раз общее количество шаров в мешке уменьшается на 1, то процесс завершится не более чем за 11 шагов. В начальном состоянии количество жёлтых и красных шаров нечётно, а количество зелёных шаров — чётно. Поскольку за один ход (выемку и замену шаров) количество шаров каждого цвета изменяется на 1, количества жёлтых и красных шаров всегда будут одной чётности, а количество зелёных шаров — противоположной чётности. Поэтому, никогда нельзя получить состояние, в котором количество зелёных и количество красных шаров оба будут нулевыми, также, как никогда нельзя получить состояние, в котором количество зелёных и количество жёлтых шаров будут нулевыми. Следовательно, в любом случае в конце мы получим состояние, в котором все оставшиеся в мешке шары будут зелёными.

в) Обозначим f(С)=Ж − З, где Ж и З — количества жёлтых и зелёных шаров в данном состоянии С = (Ж, З, К). Предположим, что из состояния С за один шаг мы перешли в состояние С' = (Ж', З', К')

Докажем, что f(С) и f(С') дают одинаковые остатки при делении на 3. Для этого покажем, что разность Δf = f(С') ‐ f(С) делится на 3. Рассмотрим несколько случаев.

Случай 1. Ж' = Ж −1, З' = З − 1, К'=К + 2. Δf = f(С') − f(С) = (Ж' − З') · (Ж − З) = 0.

Случай 2. Ж' = Ж ‐ 1, З' = З + 2, К' = К‐1. Δf = f(С') · f(С) = (Ж' − З') − (Ж − З) = −3.

Случай 3. Ж' = Ж + 2, З' = З − 1, К' = К − 1. Δf = f(С') − f(С) = (Ж' − З') − (Ж − З) = 3.

Видим, что f(С) и f(С') дают одинаковые остатки при делении на 3.

Для начального состояния C0(3, 4, 5) находим: f(C0) = Ж − З = 3 − 4 = −1.

Oбщее количество шаров в мешке остаётся неизменным, поскольку каждый раз два вынутых шара заменяются двумя шарами другого цвета. Если бы в конце в мешке все шары оказались бы одного цвета, то конечным состоянием было бы одно из трёх состояний (12, 0, 0), (0, 12, 0) или (0, 0, 12).

В любом случае f(Cn) будет делиться на 3, и, значит, f(C0) и f(Cn) дают разные остатки при делении на 3. Следовательно, применяя указанную процедуру, добиться того, чтобы в мешке оказались шары одного цвета, нельзя.

 

ответ: а) красный; б) зелёный в) нельзя

4,7(99 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ