У маленького четырёхугольника, который только родился в Петиной тетради, были родители: папа-параллелограмм и мама-квадрат. И вот задумались они, как же сыночка назвать. Спорят: папа говорит:"Он похож на меня - вон какие у него углы- не то что у тебя, жена, прямые. Значит, имя придумывать буду я." Жена ему отвечает: "Вот ещё! Хоть углы и не прямые, зато все стороны-то равные, как у меня! Я буду называть!" Услышал их спор Петя-ученик и говорит: "Эх, вы! Он похож и на маму, и на папу, а самое главное, что имя ему давно уже существует- ведь это ромб!" Посмотрели папа с мамой ещё раз внимательно на сыночка и согласились: "Молодец, Петя тебе". И стали они втроём жить-поживать в Петиной тетради. Об их приключениях вы узнаете в следующей сказке.
Доказательство от противного. Допустим, что при данном условии задачи, выполняется противоположное утверждение. Т.е, отрицание того, что в хотя бы одной из клеток два (или более) кроликов. Это означает, что в каждой клетке менее двух кроликов, т.е. в каждой клетке один кролик или ни одного кролика. Но тогда сумма всех кроликов (по клеткам) будет меньше или равно (1+1) = 2, что вступает в противоречие с тем, что кроликов три, т.к. получается, что 3<=2. Т.о., допустив противное, мы пришли в противоречие с условием теоремы. Поэтому наше предположение ложно да и вообще невозможно. Т.о. (по логическому закону исключения третьего) теорема доказана.