<> [ Здравствуйте, CarolinaTheOfficial! ] <>
<> [ • Пошаговое Объяснение: ] <>
Парабола представлена линейной переменной, а другая-квадратичной . Существует 4 типа притч:
<> [ Si x²: ] <>
(y - k) = (x - h)², с вливанием (h,k)
Он сопровождается положительным знаком, притча открывается вверх. То есть: у = x2 .
Он сопровождается отрицательным знаком, притча открывается вниз. То есть: у = -x² .
<> [ Si y²: ] <>
(x - h) = (y - k)², с вливанием (h,k)
Он сопровождается положительным знаком, притча открывается вправо. То есть x = y² .
Он сопровождается отрицательным знаком, притча открывается влево. То есть x = -y² .
<> [ С уважением, Hekady! ] <>
log(0,3) (12 - 6x) <= log (0,3) (x^2 -6x + 8) + log (0,3) (x+3)
log(a) b ОДЗ a>0 b>0 a≠1
итак ищем ОДЗ тело логарифма больше 0
1. 12 - 6x > 0 x < 2
2. x^2 - 6x + 8 > 0
D = 36 - 32 = 4
x12=(6+-2)/2=4 2
(х - 2)(х - 4) > 0
x∈ (-∞ 2) U (4 +∞)
3. x + 3 > 0 x > -3
ОДЗ x∈(-3 2)
так как основание логарифма меньше 1, поэтому знак меняется на >= c <= (противоположный)
12 - 6x ≥ (x^2 - 6x + 8)(x + 3)
6(2 - x) ≥ (x - 2)(x - 4)(x + 3)
6(x - 2) + (x - 2)(x - 4)(x + 3) ≤ 0
(x - 2)(x² - 4x + 3x -12 + 6) ≤ 0
(x - 2)(x² - x -6 ) ≤ 0
D = 1 + 24 = 25
x12=(1+-5)/2 = 3 -2
(x - 2)(x - 3)(x + 2) ≤ 0
применяем метод интервалов
[-2] [2] [3]
x ∈(-∞ -2] U [2 3] пересекаем с ОДЗ x∈(-3 2)
ответ x∈(-3 -2]