Исследование функции Y = X^3 + 6^2X + 9X.
1) Область определения:
Х€ (- ∞,+ ∞)
2) Пересечение с осью Х
Х= 0, Х = - 3.
3) Пересечение с осью У
У (0) = 0.
4) Поведение на бесконечности
У (- ∞) = - ∞
У (+ ∞) = + ∞
5) Исследование на четность
Y (+ x) = x^3 + 6x^2 + 9
Y (- х) = - х^3 + 6х - 9
Функция ни четная ни нечетная
6) Монотонность
Производная функции
Y' = 3x^2 + 12x + 9
Точки экстремумов
х1 = - 3 х2 = - 1.
Ymax (- 3) = 0
Ymin (1) = 4.
Возрастает Х€ (- ∞,- 3]∪[- 1,+ ∞)
Убывает X€ [- 3, - 1]
7) Точки перегиба - нули второй производной
Y" = 6x + 12 = 0
Х= - 2.
Выпуклая - "горка" - Х€(-∞;-2]
Вогнутая - "ложка" - Х€[-2;+∞)
Пошаговое объяснение:
Как то так.
Линейные уравнения ах = b, где а ≠ 0; x=b/a.
Пример 1. Решите уравнение – х + 5,18 = 11,58.
– х + 5,18 = 11,58;
– х = – 5,18 + 11,58;
– х = 6,4;
х = – 6,4.
ответ: – 6,4.
Пример 2. Решите уравнение 3 – 5(х + 1) = 6 – 4х.
3 – 5(х + 1) = 6 – 4х;
3 – 5х – 5 = 6 – 4х;
– 5х + 4х = 5 – 3+6;
– х = 8;
х = – 8.
ответ: – 8.
Пример 3. Решите уравнение .
. Домножим обе части равенства на 6. Получим уравнение, равносильное исходному.
2х + 3(х – 1) = 12; 2х + 3х – 3 =12; 5х = 12 + 3; 5х = 15; х = 3.
ответ: 3.
Пример 4. Решите систему
Из уравнения 3х – у = 2 найдём у = 3х – 2 и подставим в уравнение 2х + 3у = 5.
Получим: 2х + 9х – 6 = 5; 11х = 11; х = 1.
Следовательно, у = 3∙1 – 2; у = 1.
ответ: (1; 1).
Замечание. Если неизвестные системы х и у, то ответ можно записать в виде ко
Пошаговое объяснение:
надеюсь правильно
2 ящик- на 4 кг меньше чем в 3
3 ящик- х
(х-4) + х + (1.5(х-4))=39
2х-4+1.5х-6=39
3.5х=49
х=14
14 кг авокадо в третьем ящике
14-4=10 кг во втором ящике
10*1.5=15 кг в первом ящике
ответ: 15 кг авокадо в первом ящике