Угол между прямой и плоскостью – это угол между прямой и её проекцией на данную плоскость.Проведем АН ⊥ ВС.
Так как треугольник АВС –равносторонний, то АН –высота и медиана треугольника АВС.
НН1 ⊥ АВС ( призма правильная, значит боковые ребра перпендикулярны пл. основания, НН1 || BB1).
Значит AH, перпендикулярная двум пересекающимся прямым ВС и НН1 плоскости ВВ1С1С, перпендикулярна пл.ВВ1С1С ⇒
АН⊥ пл. ВВ1С1С
Тогда отрезок С1Н – проекция прямой АС1 на эту плоскость и искомый угол – угол АС1Н.
сos(∠AC1H)= С1Н/АС1.
По теореме Пифагора диагональ боковой граний АС1=√2 и из прямоугольного треугольника С1СН (СС1=1,СН=1/2)по теореме Пифагора С1Н=√5/2
сos(∠AC1H)=(√5/2)/√2 = √10/4.
ответ:сos(∠AC1H)=√10/4.
Пошаговое объяснение:
Пошаговое объяснение:
Из условия можно составить 4 уравнения с четырьмя неизвестными:
A + B = 8
A + C = 13
B + D = 8
C - D = 6
Выразим А и подставим в другие уравнения:
A = 8 - B
8 - B + C = 13 C - B = 5
B + D = 8
C - D = 6
Выразим С и подставим в другие:
C = B + 5
B + D = 8
B + 5 - D = 6 B - D = 1
Сложим два последних уравнения:
B + D = 8
B - D = 1
2B = 9 B = 4,5
В нашли, находим D:
B - D = 1 D = B - 1 = 4,5 -1 = 3,5
Ищем С и А:
C = B + 5 = 4,5 + 5 = 9,5
A = 8 - B = 8 - 4,5 = 3,5
А = 3,5
В = 4,5
С = 9,5
D = 3,5