— уравнение окружности с центром
и радиусом
— уравнение параболы
Изобразим графики данных уравнений и найдем площадь образовавшейся фигуры в правой полуплоскости.
Выразим ординаты данных уравнений:
и
Так как имеем симметричные фигуры, найдем площадь одной из них. Общая их площадь
будет состоять из площади двух
, то есть
Тогда и
. Поэтому
Так как окружность вытесняет больше площади, чем парабола, то имеем разность их площадей, определяющаяся через определенный интеграл:
Найдем первый интеграл геометрически: площадь круга находится по формуле , где
— радиус круга. Тогда четверть круга:
Найдем второй интеграл по формуле Ньютона-Лейбница:
Таким образом, кв. ед.
Тогда кв. ед.
ответ: кв. ед.
Пусть грн стоит один килограмм апельсинов, а
грн — один килограмм лимонов. Тогда 5 кг апельсинов будут стоить
грн, а 4 кг лимонов —
грн, что вместе составляет 22 грн, то есть
. Также 6 кг апельсинов будут стоить
грн, а 2 кг лимонов —
грн, что вместе составляет 18 грн, то есть
.
Имеем систему из двух линейных уравнений:
Домножим второе уравнение на 2:
Вычтем из второго уравнения первое:
Тогда
Таким образом, 2 грн стоит один килограмм апельсинов и 3 грн стоит один килограмм лимонов.
ответ: 2 грн и 3 грн.
{12,24,36,48,60,}НОК ДЛЯ 12
{24,48,72,96} НОК ДЛЯ 24
2)6(1,2,3,6) 9 (1,3,9)НОД ДЛЯ 6 И 9
(12,18,24,30)НОК ДЛЯ 6
(18,27,36,45)НОК ДЛЯ 9
3)75(1,3,5,25,15,75) НОД
45(1,3,5,9,15,45) НОД
(150,225,300.375)НОК ДЛЯ 75
(90,135,180,225)НОК ДЛЯ 45
.;)