Выполнить округление до указанного разряда до сотен - 2376; 67823; до тысяч - 43634; 5679237; до десятков тысяч - 256845; 56234; до миллионов - 12803326; 257902267;
Обозначим концы средней линии треугольника ABC, параллельной стороне AB, за MN. При этом M - середина стороны AC, а N - середина стороны BC. Длина средней линии треугольника равна половине длины стороны треугольника, которой параллельна эта средняя линия. Т.к. MN || AB, то |MN|=1/2|AB|.
AB²=(1-(-1))²+(0-2)²+(4-3)²=4+4+1=9=3²
Значит, длина стороны AB равна 3, а длина средней линии MN равна 3/2=1,5.
Это простое решение, в котором не нужны даже координаты точки C. Можно решать сложно, определяя координаты точке M и N и вычисляя затем длину отрезка MN по координатам:
Координаты середины отрезка равны полусумме соответствующих координат концов отрезка. Точка M (середина AC): x=(-1+3)/2=1 y=(2+(-2))/2=0 z=(3+1)/2=2
M(1;0;2)
Точка N (середина BC): x=(1+3)/2=2 y=(0+(-2))/2=-1 z=(4+1)/2=5/2
Нужно найти длины сторон AB = √((6-1)^2 + (1-2)^2) = √(5^2+(-1)^2) = √(25+1) = √26 BC = √((-1-6)^2 + (7-1)^2) = √((-7)^2+6^2) = √(49+36) = √85 AC = √((-1-1)^2 + (7-2)^2) = √((-2)^2+5^2) = √(4+25) = √29 Полупериметр p = (AB+BC+AC)/2 = (√26+√85+√29)/2 Площадь по формуле Герона S^2 = p(p-AB)(p-BC)(p-AC) = (√26+√85+√29)/2*(-√26+√85+√29)/2* *(√26-√85+√29)/2*(√26+√85-√29)/2 = = 1/16*(√26+√85+√29)(-√26+√85+√29)(√26-√85+√29)(√26+√85-√29) Дальше можно раскрыть скобки и получить какую-то сумму, но думаю, ничего красивого там не получится. И обратите внимание, эта формула - квадрат площади!
67823=68000
43634=44000
5679237=5679000
256845=26000
56234=60000
12803326=13000000
257902267=258000000