Нужно из скорости по течению вычесть скорость против течения, а за тем разделить на два. (20 км/ч - 16 км/ч) : 2 = 2 км/ч Чтобы узнать собственную скорость, нужно из скорости по течению вычесть скорость течения реки: 20 км/ч - 2 км/ч = 18 км/ч Или к скорости против течения прибавить скорость течения реки: 16 км/ч + 2 км/ч = 18 км/ч
Можно найти несколько пределов данной числовой последовательности. Для этого нужно посмотреть, что произойдет с ней при стремлении к бесконечности с разными знаками, и в "опасных" точках.
"Опасные" точки сразу видны, это: 1) - знаменатель обращается в 0. 2) - по обычаю проверяется эта точка.
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов: (при →∞)
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
(при →∞)
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
(при →∞)
Итак: 1) →+∞ предел равен 2) →-∞ предел равен
3) →0 предел равен:
4) → По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - мы получаем отрицательное основание).
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).
(20 км/ч - 16 км/ч) : 2 = 2 км/ч
Чтобы узнать собственную скорость, нужно из скорости по течению вычесть скорость течения реки:
20 км/ч - 2 км/ч = 18 км/ч
Или к скорости против течения прибавить скорость течения реки:
16 км/ч + 2 км/ч = 18 км/ч