ответ: будет.
Пошаговое объяснение:
Если функция дифференцируема в некоторой точке x=x0, то она и непрерывна в ней. Действительно, пусть функция y(x) дифференцируема в точке x=x0. Это значит, что lim Δy/Δx=y'(x0) при Δx⇒0. Отсюда Δy/Δx=y'(x0)+α(x), где α(x) - бесконечно малая величина при x⇒x0, т.е. при Δx⇒0. Тогда Δy=y'(x0)*Δx+α(x)*Δx, а так как y'(x0) - конечное число, то при Δx⇒0 и Δy⇒0. А это и означает, что в точке x=x0 функция непрерывна. Подставляя теперь x0=2, приходим к утвердительному ответу.
а) 56926049+2739958 = 59666007
59666007- 2739958=56926049
б)30720034851-6087336257= 24632698594;
24632698594+6087336257=30720034851
в)814638572467+46274579455= 860913151922;
860913151922-46274579455=814638572467
г)497730460002-98790873 256=398939586746;
398939586746+98790873 256=497730460002
1) 34026+5847=39873 - проголосовали за второго
2) 39873-2685=37188 - проголосовали за третьего
3) 34026+39873+37188=111087 - проголосовали за всех трёх
4) 206315-111087=95228 - не пришли голосовать
824 | 4
206
-
8
__
24
-
24
___
0