Если у заданной функции y=x²-4| x |-2x раскрыть модуль, то получим 2 функции: y=x² - 4x - 2x = x² - 6x, y=x² - 4(-x) - 2x = х² + 2х. Так как у обеих функций коэффициент с=0, то их общей границей является начало координат. График заданной функции представляет собой сочетание двух парабол. У левой параболы вершина находится в точке: Хо = -в/2а = -(-6)/(2*1) = 3, Уо = 9-6*3 = -9. У правой Хо = -2/2 = -1, Уо = 1 +2*(-1) = -1.
ответ: прямая y=m имеет с графиком не менее одной, но не более трёх общих при -9 ≤ m ≤ -1.
Самое простое решение - наглядное. Взять доску, положить на нее карту района, и пробить в ней 3 дырки в этих деревнях (чтобы масштаб правильный получился). Потом взять три гирьки весом 100, 200 и 300 граммов, связать их веревками и опустить в эти три дырки. Где окажется общий узел, которым веревки связаны - там и строить школу. Логика подсказывает, что узел окажется ближе к той деревне, где гирька тяжелее, то есть где живет 300 детей. Расстояния должны быть обратно пропорциональны количеству детей. Если расстояние от школы S до деревни |SA| = x, |SB| = y, |SC| = z, то 100x = 200y = 300z x = 2y = 3z Графически - нужно найти такую точку S в треугольнике, чтобы расстояние от нее до С было какое-то, до В - в 2 раза больше, до А - в 3 раза больше.