1) Из условия SB=SD и СВ = СD как стороны ромба следует, что отрезок SС лежит в вертикальной плоскости.
Теперь рассмотрим треугольник АSС.
Отрезок АС, как диагональ ромба с острым углом 60 градусов, равен:
АС = 2*8*cos (60°/2) = 16*(√3/2) = 8√3.
AC² = 192, SC² = 33. Их сумма равна 225, то есть равна АS² = 15² = 225.
Поэтому угол SСА прямой и отрезок SС - высота пирамиды.
<CHA=90°
<AOH+<BAD+<CHA=180°
<AOH=180°-37°-90°
<AOH=53°
<AOC+<AOH=180°
<AOC=180°-<AOH=180°-53°=127°