Пло́щадь — в узком смысле, площадь фигуры — численная характеристика, вводимая для определённого класса плоских геометрических фигур (исторически, для многоугольников, затем понятие было расширено на квадрируемыеПерейти к разделу «#Квадрируемые фигуры» фигуры) и обладающая свойствами площадиПерейти к разделу «#Свойства»[1]. Интуитивно, из этих свойств следует, что бо́льшая площадь фигуры соответствует её «большему размеру» (например, вырезанным из бумаги квадратом большей площади можно полностью закрыть меньший квадрат), a оценить площадь фигуры можно с наложения на её рисунок сетки из линий, образующих одинаковые квадратики (единицы площади) и подсчитав число квадратиков и их долей, попавших внутрь фигуры (на рисунке справа). В широком смысле понятие площади обобщается на k-мерные поверхности в n-мерном пространстве (евклидовом или римановом), в частности, на двумерную поверхность в трёхмерном пространствеПерейти к разделу «#Площадь поверхности».
Пошаговое объяснение:
Каждая сторона треугольника меньше суммы двух других сторон. ( Доказательство можете посмотреть в учебнике или найти в сети.)
Следовательно, третья сторона не может быть равна или больше 7+16, т.е. она меньше 23 см.
Но она не может быть меньше разности двух других сторон ( 16-7), так как в противном случае сторона длиной 16 см будет больше суммы длин третьей и первой стороны.
Т.е. третья сторона больше 9 см
Итак, 9 см < 3-я сторона< 23 см