Рассмотрим только кратчайшие пути. Пусть паук сидит в А1, а муха в С. Если паук пройдет по ребру A1A, то у него будет 3 пути: ADC, ABC, AC. Тоже самое, если он пройдет по ребру A1B1 или A1D1. По 3 на каждую. Всего 3*3 = 9 путей. Если он пройдет сначала по диагонали A1D, то у него будет 5 путей: DC, DAC, DBC, DC1C, DD1C. И также на каждой из 3 диагоналей. Всего 3*5 = 15 путей. Итак, получается всего 9 + 15 = 24 кратчайших путей. Есть и более длинные пути, например, A1ABB1C1C или A1DD1B1C. Таких путей очень много, я даже не знаю, как их все пересчитать.
(Х) км/ч-время на первой части пути; (Х+15) км/ч - время на второй части пути; (24/х) ч-скорость на первой части пути; (36/(x+15)) ч - скорость на второй части пути; 4 км/ч - разница между первой и второй скоростью Составляем и решаем уравнение: 36/(x+15)-24/x=4 Находим общий знаменатель, подписываем дополнительные множители, приводим к квадратному. (-4x^2-24x+384=0) Находим корни уравнения: x1=6; x2=-16 (не удовлетворяет условию) х-время на первой части пути, значит, время на первой части пути = 6 ч. Находим скорость: 24/6=4 ответ: 4 км/ч