ответ: x1=π*n, n∈Z, x2=π/4+π*k, k∈Z.
Пошаговое объяснение:
Прежде всего заметим, что cos(x)≠0. Умножив обе части уравнения на cos(x), получим уравнение sin(x)*cos(x)+cos²(x)=1. Но так как 1=sin²(x)+cos²(x), то это уравнение можно переписать в виде sin(x)*cos(x)=sin²(x), или sin(x)*[sin(x)-cos(x)]=0. Отсюда либо sin(x)=0, либо sin(x)=cos(x). Первое уравнение имеет решения x=π*n, где n∈Z. Второе уравнение можно разделить на cos(x), после чего получается уравнение tg(x)=1. Оно имеет решения x=π/4+π*k, где k∈Z.
1) а = 2 * 2 * 3 * 7 b = 2 * 2 * 3 * 7 a = b
НОК (а; b) = 2 * 2 * 3 * 7 = 84 - наименьшее общее кратное
2) с = 2 * 3 * 3 * 5 d = 2 * 2 * 5
НОК (с; d) = 2 * 2 * 3 * 3 * 5 = 180 - наименьшее общее кратное
3) е = 2 * 3 * 11 f = 2 * 2 * 2 * 3 * 11
НОК (e; f) = 2 * 2 * 2 * 3 * 11 = 264 - наименьшее общее кратное
4) h = 2 * 5 * 7 r = 5 * 5 * 7
НОК (h; r) = 2 * 5 * 5 * 7 = 350 - наименьшее общее кратное
5) m = 2 * 3 * 5 * 5 n = 2 * 2 * 2 * 2 * 3
НОК (m; n) = 2 * 2 * 2 * 2 * 3 * 5 * 5 = 1200 - наименьшее общее кратное
6) х = 2 * 5 * 11 у = 5 * 5 * 11
НОК (х; у) = 2 * 5 * 5 * 11 = 550 - наименьшее общее кратное
Чтобы найти НОК (а; b), нужно разложить данные числа на простые множители и найти произведение всех простых множителей, взятых с наибольшим показателем степени.