М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
chobanu81p08xbb
chobanu81p08xbb
02.02.2022 03:12 •  Математика

Легковая машина едет со скоросью 2 км /мин,а грузовая со скоростью 1 км/мин.какое расстояние проедит каждая из машин за 35 минут? напшите еще рещение из краткую запись я незнаю!

👇
Ответ:
Bakeneko77
Bakeneko77
02.02.2022
Скорость легковой машины - 2км\мин
Скорость грузовой машины - 1км\мин
Расстояние, которое проедет легковая машина за 35 мин - ?
Расстояние, которое проедет грузовая машина за 35 мин - ?

Решение:
1) 2*35=70(км) - проедет легковая машина за 35 минут
 2) 1*35=35(км) - проедет грузовая машина за 35 минут
4,6(55 оценок)
Ответ:
макс3109
макс3109
02.02.2022
Чтобы найти расстояние, надо скорость  умножить на время
2*35=70км
1*35=35км
4,4(80 оценок)
Открыть все ответы
Ответ:
verahohlova
verahohlova
02.02.2022
Составим уравнение касательной
y=f(x₀)+f'(x₀)(x-x₀)
Для этого найдём значение функции в точке х₀
f(1)=(2*1)/(4*1-2)=2/2=1,
и значение производной в этой точке
f'(x₀)=((2x)/(4x-2))'=((2x)'*(4x-2)-(2x)*(4x-2)')/(4x-2)²=(2*(4x-2)-(2x)*4)/(4x-2)²=
=-4/(4x-2)²
f'(1)=-4/(4*1-2)²=-4/4=-1
Уравнение касательной будет выглядеть так:
y=1+(-1)*(x-1)=1-x+1=2-x
Получаем что при х=0 у=2, а при у=0 х=2. Значит треугольник равносторонний с боковыми сторонами равными 2 ед. и прямоугольный, так как ограничен осями координат. По формуле площади прямоугольного треугольника находим площадь:
S=(1/2)*2*2=2 ед².
Вычислите площадь треугольника, ограниченного осями координат и касательной к графику функции у=(2х)
4,8(56 оценок)
Ответ:
shirowa234567815690
shirowa234567815690
02.02.2022
Вычислить площадь треугольника, ограниченного осями координат и касательной к графику функции у=х/(2х — 1) в точке с абсциссой х₀=1.

Решение:
Найдем уравнение касательной к графику функции
у=х/(2х — 1) в точке с абсциссой х₀=1.
Уравнение касательной записывается по формуле
 
                                    y(x)=y'(x₀)(x-x₀)+y(x₀)

Найдем значение y(x₀)

y(x₀) = х₀/(2х₀ — 1)
Так как х₀=1, то
y(1) = 1/(2*1 — 1)=1
Найдем производную функции
y'=( \frac{x}{2x-1} )'=\frac{x'(2x-1)-x(2x-1)'}{(2x-1)^2}=\frac{2x-1-2x}{(2x-1)^2}=-\frac{1}{(2x-1)^2}
Значение производной функции в точке x₀=1
y'(1)=-1/(2*1-1)²=-1
Запишем уравнение касательной

                                   y =-(x-1)+1=-x+2
Данная прямая имеет две точки пересечения с осями координат
При х=0 у=2 и х=2  у=0
(0;2) и (2;0)
Найдем площадь треугольника через интеграл так как площадь фигуры ограничена прямой касательной с пределами интегрирования от х₁=0 до х₂=2
S_{TP}= \int\limits^2_0 {(-x+2)} \, dx=(- \frac{x^2}{2}+2x) \left[\begin{array}{ccc}2\\0\end{array}\right]= - \frac{2^2}{2}+2*2=2

Или найти площадь прямоугольного треугольника( так как оси координат имеют угол 90⁰)  с катетами равными 2
S=(a*b)/2=2*2/2=2

ответ: S=2
4,6(77 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ