ответ:ответ. 102. Решение. Проведем отрезки BD и CE. Пусть они пересекаются в точке О. Заметим, что треугольники BCD и CDE равнобедренные с углом 108 при вершине, а значит, углы при основании равны 36 (они отмечены на рисунке одной дугой). Тогда BCE = BDE = 72. Угол COD равен 108 (т.к. в треугольнике COD два угла по 36). Поэтому COB = 180108 = 72. Углы по 72 отмечены на рисунке двумя дугами. Получаем, что треугольники CBO и DEO равнобедренные. Значит, AB = BO =BC = CD = DE = EO = х. Заметим, что OBA = 9636 = 60. Значит, треугольник OBA равнобедренный с углом 60 при вершине, т.е. равносторонний. Поэтому AO = x. Вычислим угол AOE AOE = EOBAOB = 10860 = 48. Треугольник AOE равнобедренный с углом 48 при вершине. Поэтому OEA = (18048)/2 = 66. Получаем, что угол E пятиугольника равен AED = AEO+OED = 66+36 = 10
Пошаговое объяснение:
а) В обычном году 365 дней. Но ученик может родиться и в високосный год, поэтому нужно рассматривать 366 дней.
Мы не можем утверждать, что все ученики родились в разные дни (это очевидно: учеников больше, чем дней), значит обязательно найдутся двое, родившихся в один.
б) а вот три ученика необязательно. Утверждать, что три ученика родятся в один день мы могли бы только в случае, если бы учеников было больше 732 (в два раза больше, чем дней в году + ещё минимум один ученик). Если учеников будет 732 то есть вероятность, что на каждый день выпадет ровно два дня рождения. Если меньше - то тем более трое могут и не найтись.
160 : 8 = 20 мест в одном ряду