Впяти кружках занимаются всего 8 школьников, причем нет двоих школьников а и б, для которых выполняется условие: все кружки, которые посещает а, посещает и б. докажите, что каждый школьник занимается в двух или трёх кружках
обозначим учеников через 1,2,..8, а кружки через А,Б,В,Г,Д
не ограничивая общности если 1й ходит только в кружок А, то остальные в кружок А ходить не могут, иначе сразу противоречие (если например второй ходит в кружок А и другой кружок, например Б, то он ходит во все кружки в которые ходит 1, что невозможно)
т.е. ученики ходят минимум в 2 кружка (могут и в большее).
никто из ребят не может ходить сразу во все пять кружков, иначе он будет ходить во все кружки которые ходит любой другой из ребят
Далее если например 1й ученик ходит в 4 кружка (например А,Б,В,Г), то
никто не может ходить в комбинацию двух или трех кружков из кружков А,Б,В, Г так как 1й будет ходить во все кружки что и второй
остаются возможными варианты Б,Е или В,Е, или Г,Е или А,Е или А,Б,Е, или Б, В, Е, или В,Г, Е, или А,Г,Е или Б, В, Г, Е или А, Б, В, Е, или А,Г, В, Е или А, Б, Г, Е
если 2й ходит в 2 кружка из оставшихся например Б,Е , то исключая противоречивые согласно условию остаются возможными 6 вариантов или В,Е, или Г,Е или А,Е или В,Г, Е, или А,Г,Е или А,Г, В, Е (среди которых есть противоречивые например В,Е и А,Г, В, Е) и вариантов получается меньше чем 6, и для какогото из учеников не остается варианта выбора
если 2й ходит в 3 кружка, например А,Б,Е, то исключая остаются возможности для других учеников или В,Е, или Г,Е или В,Г, Е, или А,Г,Е или Б, В, Г, Е или А,Г, В, Е - 6 возможностей , среди которых есть противоречивые (например Г,Е и А,Г, В, Е) и возможностей получается меньше чем оставшихся учеников.
если 2й ходит в 4 кружка например Б, В, Г, Е, то исключая согласно условию остаются возможности или А,Б,Е или А,Г,Е или А, Б, В, Е, или А,Г, В, Е или А, Б, Г, Е - 5 возможностей - меньше чем оставшихся учеников. Следовательно и такой вариант событий не подходит.
Таким образом получаем что не один ученик не может ходить в четыре кружка.
Обьединяя получаем искомое, что согласно правилам и условию каждый школьник занимается в 2х или 3х кружках.
Таким образом, число 2*2*3*3 = 36 будет делиться на 12 и 18. т.к. в его разложении на простые множители есть все нужные двойки и тройки. Что бы получить трехзначное число, кратное 12 и 18 будем добавлять к 36 по 36 столько раз, сколько нужно, что бы получилось трехзначное число: 36+36 = 72 72 + 36 = 108
ответ: 108. (ну и т.д. можно получить еще несколько чисел добавляя по 32).
2) 12= 2*2*3 8= 2*2*2
Таким образом, число 2*2*3*3 = 36 делится на 12 и не делится на 8, т.к. в разложении числа 36 на простые множители не хватает двоек для делимости на 8.
3.) 15 = 3*5 9 = 3*3 Таким образом, 3*3*5 = 45 - делится на 9 и 15 и будет наименьшим из таких чисел, т.к. в нем есть нужное для делимости количество троек и пятерок и их количество - минимально.
Таким образом, число 2*2*3*3 = 36 будет делиться на 12 и 18. т.к. в его разложении на простые множители есть все нужные двойки и тройки. Что бы получить трехзначное число, кратное 12 и 18 будем добавлять к 36 по 36 столько раз, сколько нужно, что бы получилось трехзначное число: 36+36 = 72 72 + 36 = 108
ответ: 108. (ну и т.д. можно получить еще несколько чисел добавляя по 32).
2) 12= 2*2*3 8= 2*2*2
Таким образом, число 2*2*3*3 = 36 делится на 12 и не делится на 8, т.к. в разложении числа 36 на простые множители не хватает двоек для делимости на 8.
3.) 15 = 3*5 9 = 3*3 Таким образом, 3*3*5 = 45 - делится на 9 и 15 и будет наименьшим из таких чисел, т.к. в нем есть нужное для делимости количество троек и пятерок и их количество - минимально.
обозначим учеников через 1,2,..8, а кружки через А,Б,В,Г,Д
не ограничивая общности если 1й ходит только в кружок А, то остальные в кружок А ходить не могут, иначе сразу противоречие (если например второй ходит в кружок А и другой кружок, например Б, то он ходит во все кружки в которые ходит 1, что невозможно)
т.е. ученики ходят минимум в 2 кружка (могут и в большее).
никто из ребят не может ходить сразу во все пять кружков, иначе он будет ходить во все кружки которые ходит любой другой из ребят
Далее если например 1й ученик ходит в 4 кружка (например А,Б,В,Г), то
никто не может ходить в комбинацию двух или трех кружков из кружков А,Б,В, Г так как 1й будет ходить во все кружки что и второй
остаются возможными варианты Б,Е или В,Е, или Г,Е или А,Е или А,Б,Е, или Б, В, Е, или В,Г, Е, или А,Г,Е или Б, В, Г, Е или А, Б, В, Е, или А,Г, В, Е или А, Б, Г, Е
если 2й ходит в 2 кружка из оставшихся например Б,Е , то исключая противоречивые согласно условию остаются возможными 6 вариантов или В,Е, или Г,Е или А,Е или В,Г, Е, или А,Г,Е или А,Г, В, Е (среди которых есть противоречивые например В,Е и А,Г, В, Е) и вариантов получается меньше чем 6, и для какогото из учеников не остается варианта выбора
если 2й ходит в 3 кружка, например А,Б,Е, то исключая остаются возможности для других учеников или В,Е, или Г,Е или В,Г, Е, или А,Г,Е или Б, В, Г, Е или А,Г, В, Е - 6 возможностей , среди которых есть противоречивые (например Г,Е и А,Г, В, Е) и возможностей получается меньше чем оставшихся учеников.
если 2й ходит в 4 кружка например Б, В, Г, Е, то исключая согласно условию остаются возможности или А,Б,Е или А,Г,Е или А, Б, В, Е, или А,Г, В, Е или А, Б, Г, Е - 5 возможностей - меньше чем оставшихся учеников. Следовательно и такой вариант событий не подходит.
Таким образом получаем что не один ученик не может ходить в четыре кружка.
Обьединяя получаем искомое, что согласно правилам и условию каждый школьник занимается в 2х или 3х кружках.
такое возможно
например
1 - А,Б, 2 - Б,В, 3 - В,Г, 4 - Г,Д, 5 -Д,Е 6 - А,Е, 7 - Б,Е 8 - Г,Е