1) найдем внутренний угол Д: 180-125=55°
Найдем угол С: С=180°-(90+55°)=35°
2) в треугольнике КМТ оба катета равны, значит, углы МКТ и КТМ равны 45°. Найдём угол Т в треугольнике KTS: Т=180-45=135°.
Угол S = 180°-(20°+135°)=25°.
3) Катет АС в два раза меньше гипотенузы АД, значит, угол Д=30°. Угол А=180°-(90°+30°)=60°
4) Первый острый угол – х; второй острый угол – 4х.
х+4х+90=180
5х=90
х=18° - первый острый угол
4×18°=72° - второй острый угол
5) Начертим прямоугольный треугольник АСВ, где угол С=90°.
Проведем биссектрисы СМ и ВК, которые пересекаются в точке О.
Рассмотрим треугольник СОВ, где угол С=45°, угол О=132°, угол В = 180°-(45°+132°)=3°.
Значит, в треугольнике АСВ угол В=6°.
Найдем угол А: А=180°-(90°+6°)=84°.
Итог: треугольник АСВ имеет углы: С=90°; В=6°; А=84°
a) – 5(3а – 4) + 2(4а – 10)=-15a+20+8a-20=-7a
a=-4,5 => -7a=-7•(-4,5)=31,5
б) 0,2(5х – 8) – 0,3(3х – 6)=х-1,6-0,9х+1,8=0,1х+0,2
х=25 => 0,1х+0,2=0,1•25+0,2=2,5+0,2=2,7