Сначала найдем точку минимума, для чего вычислим производную:
y’ = (2x3 − 3x2 − 12x + 1)’ = 6x2 − 6x − 12.
Найдем критические точки, решив уравнение y’ = 0. Получим стандартное квадратное уравнение:
y’ = 0 ⇒ 6x2 − 6x − 12 = 0 ⇒ ... ⇒ x1 = −1, x2 = 2.
Отметим эти точки на координатной прямой.
Теперь найдем минимальное значение функции на отрезке [−3; 3]. Оно достигается либо в точке минимума (тогда она становится точкой глобального минимума), либо на конце отрезка. Заметим, что на интервале (2; 3) производная всюду положительна, а значит y(3) > y(2), поэтому правый конец отрезка можно не рассматривать. Остались лишь точки x = −3 (левый конец отрезка) и x = 2 (точка минимума). Имеем:
y(−3) = 2(−3)3 − 3(−3)2 − 12(−3) + 1 = −44;
y(2) = 2*23 − 3*22 − 12*2 + 1 = −19.
Итак, наименьшее значение функции достигается на конце отрезка и равно −44.
ответ: xmin = 2; ymin = −44
Дана трапеция АВСД. Основание АД=22. ДМ - биссектриса, точка М - точка пересечения биссектрисы и боковой стороны АВ, АМ=10, МВ=5
Проведём прямую МК параллельную АД, /КМД=/МДА - накрест лежащие. /КДМ=/МДА, т.к. ДМ - биссектриса, следовательно, /КДМ=/КМД, т.е. треугольник МКД равнобедренный (по признаку), имеем МК=КД, но КД=АМ=10, то МК=10
МН - высота треугольника АМД, в нём АН=(22-10):2=6 (по свойству оснований равнобокой трапеции). По Т.Пифагора находим МН как катет прямоугольного треугольника АМН с гипотенузой 10 и другим катетом 6, МН=8.ВО перпендикуляр к МК. Треугольники АМН и МВО подобны с к=2, т.е. ВО=8:2=4, МО=6:2=3.
Имеем: высота трапеции равна 8+4=12, второе основание ВС=10-3·2=4 (по свойству оснований равнобокой трапеции)
Площадь трапеции равна полусумме оснований умноженная на высоту, т.е. S=(4+22):2·12=156