Вквартире две комнаты.длина и ширина одной комнат 7м и 5 м, а другой 5 м и3 м. сколько граммов краски потребуются для покраски пола в этих комнатах, если на окраску 1м2пола расходовать 100г краски?
Если исходное число равно A, то число, большее на 1, равно A + 1, а новое шестизначное число равно 1000A + (A + 1) = 1001A + 1. 1001A + 1 должно быть полным квадратом.
1001 = 7 * 11 * 13. Поскольку n < 1000, n - 1 или n + 1 не могут делиться на все три числа одновременно, перебираем варианты.
1) n - 1 делится на 7, n + 1 делится на 11 * 13 = 143. n + 1 = 143k, k < 7 n - 1 = 143k - 2 = 140k + (3k - 2) делится на 7, т.е. 3k - 2 делится на 7. Перебором находим k = 3, n = 143 * 3 - 1 = 428. n^2 = 183184, A = 183
2) n - 1 делится на 11, n + 1 делится на 7 * 13 = 91. n + 1 = 91k, k < 11 n - 1 = 91k - 2 = 88k + (3k - 2) делится на 11, т.е. 3k - 2 делится на 11. Перебором находим k = 8, n = 91 * 8 - 1 > 428
3) n - 1 делится на 13, n + 1 делится на 7 * 11 = 77. n + 1 = 77k, k < 13 n - 1 = 77k - 2 = 78k - (k + 2), k + 2 делится на 13, откуда k = 11. n = 77 * 11 - 1 > 428
4) n + 1 делится на 7, n - 1 делится на 143 n - 1 = 143k, k < 7 n + 1 = 143k + 2 = 140k + (3k + 2), 3k + 2 делится на 7, k = 7 - 3 = 4. n = 143 * 4 + 1 > 428
5) n + 1 делится на 11, n - 1 делится на 91. n - 1 = 91k, k < 11 n + 1 = 88k + (3k + 2), 3k + 2 делится на 11, k = 11 - 8 = 3 n = 91 * 3 + 1 = 274 n^2 = 75076, не подходит
6) n + 1 делится на 13, n - 1 делится на 77. n - 1 = 77k, k < 13 n + 1 = 78k - (k - 2), k - 2 делится на 13, k = 13 - 11 = 2 n = 77 * 2 + 1 = 155 n^2 = 24025, не подходит.
f(3 - (2 - x)) + g((2 - x) + 1) = (2 - x)^2 - 5(2 - x) + 19
f(x + 1) + g(3 - x) = x^2 + x + 13
Складываем полученное уравнение с 2f(x + 1) - g(3 - x) = 2x^2 + 11x - 4:
3f(x + 1) = 3x^2 + 12x + 9
f(x + 1) = x^2 + 4x + 3 — меняем x на x - 1
f(x) = (x - 1)^2 + 4(x - 1) + 3
f(x) = x^2 + 2x
Подставляем f(x + 1) в равенство f(x + 1) + g(3 - x) = x^2 + x + 13 и находим g:
x^2 + 4x + 3 + g(3 - x) = x^2 + x + 13
g(3 - x) = 10 - 3x — меняем x на 3 - x
g(x) = 10 - 3(3 - x)
g(x) = 3x + 1
Теперь можно решать уравнение f(2 - x) = g(x + 1).
(2 - x)^2 + 2 (2 - x) = 3 (x + 1) + 1
x^2 - 6x + 8 = 3x + 4
x^2 - 9x + 4 = 0
D = 9^2 - 4 * 4 = 65
x = (9 +- √65)/2