1) Объем пирамиды равен 1/3 произведения площади основания на высоту. Так ка пирамида правильная, то в основании - квадрат, его площадь 6х6=36. Так как боковое ребро образует с основанием угол 45, это угол между ребром пирамиды и диагональю основания, а значит высота пирамиды образует с этим же ребром угол 45. Рассматриваем прямоугольный равнобедренный треугольник, катеты которого равны половине диагонали основания, т.е. 3корня из2. Тогда объем пирамиды V=1/3 умножить на 36 и умножить на 3корня из2 или 36 корней из2.
ответ: 36 корней из2.
2) Формула объёма та же. Площадь основания - это площадь правильного треугольника, она равна 4 корня из 3. Высота пирамиды опущена в точку, являющуюся точкой пересечения медиан ( высот) правильного треугольника. Эта точка делит высоту (медиану) треугольника основания в отношении 2:1, считая от вершины. В итоге получаем прямоугольный треугольник, образованный высотой пирамиды, боковым ребром и высотой основания. В этом треугольнике нам известны угол 60 градусов и прилежащий катет ( это 2/3 высоты основания, т.е. 4 корня из 3 деленное на 3). Воспользуемся определение тангенса острого угла прямоугольного треугольника: отношение противолежащео катета к прилежащему катету и находим высоту пирамиды из пропорции х:4 корня из 3 деленное на 3 = tg 60 или х=4 корня из 3 деленное на 3умножить на корень из 3, получаем х=4. Теперь находим объем: 1/3 умножить на 4 корня из 3 и умножить на 4 = 16 корней из 3 деленные на 3.
1.расстояние от центра окружности до хорды - это перпендикуляр(т.е. прямая в 5 см,перпендикулярна хорде) 2.соединяем концы хорды с центром окружности отрезками,которые равны радиусу,у нас получается треугольник,в котором неизвестно основание и известны две боковые стороны и высота,разделяющая этот треугольник на два маленьких равных треугольника. 3.рассматриваем один маленький треугольник,он перпендикулярен(см.п.1) один катет равен 5,а гипотенуза равна 13,по теореме Пифагора находим второй катет х^2=169-25 х^2=144 х=12 этот какте равен половине основания(т.е. искомой хорды),значит хорда равна 12*2=24 ответ:24
1) Объем пирамиды равен 1/3 произведения площади основания на высоту. Так ка пирамида правильная, то в основании - квадрат, его площадь 6х6=36. Так как боковое ребро образует с основанием угол 45, это угол между ребром пирамиды и диагональю основания, а значит высота пирамиды образует с этим же ребром угол 45. Рассматриваем прямоугольный равнобедренный треугольник, катеты которого равны половине диагонали основания, т.е. 3корня из2. Тогда объем пирамиды V=1/3 умножить на 36 и умножить на 3корня из2 или 36 корней из2.
ответ: 36 корней из2.
2) Формула объёма та же. Площадь основания - это площадь правильного треугольника, она равна 4 корня из 3. Высота пирамиды опущена в точку, являющуюся точкой пересечения медиан ( высот) правильного треугольника. Эта точка делит высоту (медиану) треугольника основания в отношении 2:1, считая от вершины. В итоге получаем прямоугольный треугольник, образованный высотой пирамиды, боковым ребром и высотой основания. В этом треугольнике нам известны угол 60 градусов и прилежащий катет ( это 2/3 высоты основания, т.е. 4 корня из 3 деленное на 3). Воспользуемся определение тангенса острого угла прямоугольного треугольника: отношение противолежащео катета к прилежащему катету и находим высоту пирамиды из пропорции х:4 корня из 3 деленное на 3 = tg 60 или х=4 корня из 3 деленное на 3умножить на корень из 3, получаем х=4. Теперь находим объем: 1/3 умножить на 4 корня из 3 и умножить на 4 = 16 корней из 3 деленные на 3.
ответ: 16 корней из 3 деленные на 3.