36 карт 4 туза, 32 не туза
а) первый туз 4/36
второй туз 3/35
третий не туз 32/34
вероятность P(т, т, н) = 3*4*32 / (34*35*36) = 16 / 1785
так как всего существует три варианта расположения "не туза"
ттн, тнт, нтт
общая вероятность P(2т) = 3 * 16/1785 = 0,027
ответ 2,7%
б) вероятность. что хотя бы одна - туз проще вычислить из вероятности события "ни одного туза"
P(3н) = 32/36 * 31/35 * 30/34 = 0,695
откуда искомая вероятность = 1 - 0,695 = 0,305
ответ: 30,5%
Пошаговое объяснение:
Общее уравнение прямой
Ax + By + C = 0. (2.1)
Вектор n(А,В) ортогонален прямой, числа A и B одновременно не равны нулю.
Уравнение прямой с угловым коэффициентом
y - yo = k (x - xo), (2.2)
где k - угловой коэффициент прямой, то есть k = tg a, где a - величина угла, образованного прямой с осью Оx, M (xo, yo ) - некоторая точка, принадлежащая прямой.
Уравнение (2.2) принимает вид y = kx + b, если M (0, b) есть точка пересечения прямой с осью Оy.
Уравнение прямой в отрезках
x/a + y/b = 1, (2.3)
где a и b - величины отрезков, отсекаемых прямой на осях координат.
Уравнение прямой, проходящей через две данные точки - A(x1, y1) и B(x2, y2 ):
уравнения. (2.4)
Уравнение прямой, проходящей через данную точку A(x1, y1) параллельно данному вектору a(m, n)
уравнение. (2.5)
Нормальное уравнение прямой
rnо - р = 0, (2.6)
где r - радиус-вектор произвольной точки M(x, y) этой прямой, nо - единичный вектор, ортогональный этой прямой и направленный от начала координат к прямой; р - расстояние от начала координат до прямой
2)3*3*3=27см³
3)10*10*10=1000дм³