А) n^4+64=(n^2)^2 + 2*n^2*8 + 8^2 - 2*n^2*8=(n^2+8)^2-(4n)^2= (n^2-4n+8)*(n^2+4n+8) При n>0 n^2-4n+8 < n^2+4n+8. Поэтому если n^2-4n+8 > 1, то n^2+4n+8 > 1, а все произведение - составное число. n^2-4n+8>1 достигается при любых значениях n: n^2-4n+7>0 D=(-4)^2-4*7=-12<0 Причем n^2-4n+8=1 ни при каких n. Таким образом, n^4+64 является составным при любых натуральных n. б) n^4+n^2+1=n^4+2n^2+1-n^2=(n^2+1)^2-n^2=(n^2-n+1)(n^2+n+1) При n > 0 n^2-n+1<n^2+n+1. Рассмотрим случай, когда n^2-n+1=1. n^2-n=0, n=0 или n=1. Соответственно, при n=1 n^4+n^2+1=(1^2-1+1)(1^2+1+1)=3 - простое число. n=1 не подходит. Если n^2-n+1>1, n > 1 - каждая из скобок больше 1. То есть произведение этих скобок дает составное число. Таким образом, n^4+n^2+1 является составным для всех натуральных n, кроме 1.
Обозначим их числами от 1 до 14. Выпишем составы партий: (1,2,3);(1,2,4);(3,4,5);(5,6,7);(6,7,8);(8,9,10);(9,10,11);(11,12,13);(12,13,14) Как я построил этот список? Взял две первые тройки, (1,2,3);(1,2,4). Жители 1 и 2 уже состоят в 2 партиях каждый, больше они не могут быть ни в одной партии. Следующую партию берем (3,4,5). Теперь жители 3 и 4 каждый в двух партиях, а 5 пока в одной. (5,6,7);(6,7,8) Теперь 5, 6 и 7 - каждый в 2 партиях, и появился житель 8. (8,9,10);(9,10,11) Теперь 8, 9 и 10 - каждый в 2 партиях, и появился житель 11. (11,12,13);(12,13,14) Теперь 11, 12 и 13 - каждый в 2 партиях, и только 14 в одной. Больше жителей нет, поэтому дальше продолжить нельзя. Получилось 9 партий.
Можно построить список по другому принципу: (1,2,3);(1,4,5);(2,4,6);(3,5,6);(7,8,9);(7,10,11);(8,10,12);(9,11,13);(12,13,14) Но в результате все равно получилось 9 партий. Все жители входят в две партии, только 14 в одну.
так как 100см-1метр