7.
Из обратно теоремы о пропорциональных отрезков, если прямые, пересекающие две другие прямые (параллельные или нет), отсекают на обеих из них равные или пропорциональные между собой отрезки, начиная от вершины, то такие прямые параллельны. Отсюда следует, что:
Отрезки MN и NK параллельны отрезкам BC и AD, а значит, и весь отрезок MK || основам трапеции (BC || AD). MK — средняя линия трапеции, т.к. точка М делит сторону AB пополам.
Формула для нахождения ср. линии трапеции:

где a и b — основы трапеции.
Подставляем значения:

ответ: MK = 12.
8. EM || BC || AD по теореме о пропорциональных отрезках. EM — средняя линия трапеции. Все отрезки, образующие среднюю линию EM параллельны основам трапеции.
Найдем EM:

Средняя линия делит диагонали пополам.
Р-м ΔABC и ΔDCC: EK и LM — средние линии.
Средняя линия треугольника равна половине стороны к которой она параллельна. Находим длины этих отрезков.
EK = LM = DB/2 = 6/2 = 3.
Находим KL: EM − (EK+LM) = 11−(3+3) = 5
ответ. KL = 5.
9. ABCD — равнобедренная трапеция. MF — средняя линия, AM = MB = CF = FD = 2. BC = EK = 2. BE и CK — высоты трапеции.
Р-м прямоугольные треугольники ABE и DKC: ∠A = ∠D = 60°. Значит ∠AEB и ∠KCD — по 30°.
Катет, лежажий напротив угла, синус которого 30°, равен половине гипотенузе. AE/KD = AB/CD/2= 2.
AD = 2*2+2 = 6

ответ: MF = 4.
Общее уравнение прямой
Ax + By + C = 0. (2.1)
Вектор n(А,В) ортогонален прямой, числа A и B одновременно не равны нулю.
Уравнение прямой с угловым коэффициентом
y - yo = k (x - xo), (2.2)
где k - угловой коэффициент прямой, то есть k = tg a, где a - величина угла, образованного прямой с осью Оx, M (xo, yo ) - некоторая точка, принадлежащая прямой.
Уравнение (2.2) принимает вид y = kx + b, если M (0, b) есть точка пересечения прямой с осью Оy.
Уравнение прямой в отрезках
x/a + y/b = 1, (2.3)
где a и b - величины отрезков, отсекаемых прямой на осях координат.
Уравнение прямой, проходящей через две данные точки - A(x1, y1) и B(x2, y2 ):
уравнения. (2.4)
Уравнение прямой, проходящей через данную точку A(x1, y1) параллельно данному вектору a(m, n)
уравнение. (2.5)
Нормальное уравнение прямой
rnо - р = 0, (2.6)
где r - радиус-вектор произвольной точки M(x, y) этой прямой, nо - единичный вектор, ортогональный этой прямой и направленный от начала координат к прямой; р - расстояние от начала координат до прямой
17*29=493
24650:493=50
4008*50=200400
200400:167=1200
ответ 1200