7:2=3,5 (боч.) - количество мёда в 7 "половинках" 7+3,5=10,5 (боч.) - общее количество мёда 10,5:3=3,5 (боч.) - мёда должен получить каждый Каждый взял по 7 бочонков и мёда, равного по объёму 3,5 (3 с половиной) бочонкам. Надо представить 3,5 в виде суммы, состоящей из семи слагаемых, причём слагаемыми могут быть числа 1, 0,5 и 0, где 1 - полный бочонок мёда, 0,5 - полбочонка мёда, 0 - пустой бочонок 3,5=1+1+1+0,5+0+0+0 3,5=1+0,5+0,5+0,5+0,5+0,5+0 3,5=1+1+1+0,5+0+0+0 1-ый вариант: двое взяли по 3 полных, по 1 "половинке" и по 3 пустых бочонка; третий взял 1 полный, 5 "половинок" и 1 пустой бочонок. 3,5=1+1+0,5+0,5+0,5+0+0 3,5=1+1+1+0,5+0+0+0 3,5=1+1+0,5+0,5+0,5+0+0 2-ой вариант: двое взяли по 2 полных, по 3 "половинки" и по 2 пустых бочонка; третий взял 3 полный, 1 "половинку" и 3 пустых бочонка.
Произведение 16 можно составить из разных натруральных чисел только двумя
I.
II.
Поскольку это должны быть минимальные числа, то остальные числа могут быть только больше.
I* В первом случае остальные числа могут быть только больше т.е.:
Но произведение даже
И произведение любых двух чисел, больших, чем каждое – будет, очевидно, больше чем т.е. больше а значит, при выборе минимальных чисел в виде и – подобрать остальные числа невозможно.
II* Во втором случае остальные числа могут быть только больше т.е.:
Рассмотрим разложение на множители числа
На подойдут только числа, большие восьми и не равные друг другу, т.е. и
Таким образом Вася выбрал числа и
В диапазон между и Вася никаких чисел добавить не мог бы, поскольку тогда минимальные числа стали бы другими, и их произведение уже не было бы
Между и никаких натуральных чисел нет.
В диапазон между и Вася тоже никаких чисел добавить не мог бы, поскольку тогда максимальные числа стали бы другими, и их произведение уже не было бы