Рассчитаем НОД
Алгоритм Евклида работает так: (a,b) = (b, a%b)
(% - остаток от деления, скобки - нод)
Тогда (45649, 16013) = (16013, 45649%16013) = (16013, 13623) = (13623, 16013%13623) = (13623, 2390) = (2390, 13623%2390) = (2390, 1673) = (1673, 2390%1673) = (1673, 717) = (717, 1673%717) = (717, 239) = 239 (717 поделилось на 239 нацело)
Итак, НОД этих двух чисел = 239
НОК невозможно рассчитать с алгоритма Евклида, зато мы можем воспользоваться формулой
a*b=НОД*НОК
a*b = 730 977 437
НОК = 730 977 437 / 239 = 3 058 483
ответ: Используем геометрическое определение вероятности события A — "встреча с другом состоится".Если площадь S(X) фигуры X разделить на площадь S(A) фигуры A , которая целиком содержит фигуру X, то получится вероятность того, что точка, случайно выбранная из фигуры X, окажется в фигуре A.
Обозначим за x и y время прихода, 0≤x,y≤60 (минут), так как время ожидания с 13.00 до 14.00 равно 60 мин. В прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата OABC. Друзья встретятся, если между моментами их прихода пройдет не более 6 минут, то есть
y-x<6 , y<x+6 (y>x) и
x-y<6 , y>x-6 (y<x).
Этим неравенствам удовлетворяют точки, лежащие в области Х.
Для построения области Х надо построить прямые у=х+6 и у=х-6.Затем рассмотреть точки, лежащие ниже прямой у=х+6 и выше прямой у=х-6.
Кроме этого точки должны находиться в квадрате ОАВС.
Площадь области Х можно найти, вычтя из площади квадрата ОАВС площадь двух прямоугольных треугольников со сторонами (60-6)=54:
S(X)=S(OABC)-2*S(Δ)=60²-2*1/2*54*54=3600-2916=684.
ответ:29200 кг корма