М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
228alex777
228alex777
12.03.2020 21:10 •  Математика

Самые высокие горы евразии . и информация про них т. е. высота , ширина , площадь горы и так далее .

👇
Ответ:
Maxyim
Maxyim
12.03.2020
Гималаи - высочайшая горная система земного шара, расположена между Тибетским нагорьем (на севере) и Индо-Гангской равниной (на юге) . Длина свыше 2400 км, ширина до 350 км. Средняя высота гребней около 6000 м, максимальная высота до 8848 м, г. Джомолунгма (Эверест) высшая точка Земли. 11 вершин более 8 тыс. м. Это климатический и природный рубеж между пустынями Центральной Азии и тропическими ландшафтами Южной Азии. Гималаи возвышаются над Индо-Гангской равниной 3 ступенями, образующими Сиваликские горы (Предгималаи) , Малые и Большие Гималаи. Для Больших Гималаев характерны гребни альпийского типа, ледники (свыше 33 тыс. км2). В Гималаях берут начало основные реки Южной Азии: Инд, Ганг, Брахмапутра. На южных склонах снизу вверх сменяются тераи (заболоченные джунгли) , вечнозеленые тропические леса, листопадные и хвойные леса, кустарники, луга. Выше 5000 м ландшафты гляциально-нивального пояса. На северных склонах горные степи и полупустыни.
4,4(89 оценок)
Ответ:
aliceoliver443
aliceoliver443
12.03.2020
Гималаи 8848м Памир 7495м
4,4(98 оценок)
Открыть все ответы
Ответ:
NeZoXshock
NeZoXshock
12.03.2020
ответ:\dfrac{63}{40}Пошаговое объяснение:Нарисуем сначала нашу область D.1) y = x

Это прямая, которая проходит через начало координат и находится под углом в 45 градусов от полуоси Ох, проходит например через точку (1 1)

2) y = x² - 2

Это парабола (перед нами квадратный трехчлен) Вершина в точке (0 2), образована путем смещения всех точек параболы у = х² на 2 единицы вниз

Смотрите вложение!

Мы интегрируем по красной области1) Запишем границы

х меняется от -1 до 2 это границы, х координаты точек пересечения (видно из графика)

Для того, чтобы из найти решим уравнение

\displaystyle x^2-2=x\\x^2-x-2=0\\x^2-2x+x-2=0\\x(x-2)+(x-2)=0\\(x+1)(x-2)=0\\\left [ {{x=-1} \atop {x=2}} \right.

Это будут первые границы по х

Границы по у - это функции от х. Снизу (нижняя граница) функция y=x^2-2 а верхняя граница функция x

Тогда запишем двойной интеграл как пару интегралов, зная границы

\displaystyle \iint\limits_D xy^2dxdy=\int\limits^2_{-1}dx\int\limits^x_{x^2-2x}xy^2dy

Решим данный интеграл

1 Проинтегрируем xy^2 по у

\displaystyle\int xy^2dy=x\displaystyle\inty^2dy=x\cdot\dfrac13y^3=\dfrac13xy^3

константу не пишу специально, так как сейчас буду писать пределы

2 Вычислим

\dfrac13xy^3\Bigg|^x_{x^2-2}=\dfrac13x\cdotx^3-\dfrac13x\cdot(x^2-2)^3=\dfrac13x\Big(x^3-(x^2-2)^2\Big)=-\dfrac13x^7+2x^5+\dfrac13x^4-4x^3+\dfrac83x

3 Проинтегрируем полученную функцию по х

\displaystyle \int\Bigg(-\dfrac13x^7+2x^5+\dfrac13x^4-4x^3+\dfrac83x\Bigg)dx=\\=-\int\dfrac13x^7dx+\int2x^5dx+\int\dfrac13x^4dx-\int4x^3dx+\int\dfrac83xdx=\\=-\dfrac13\int x^7dx+2\int x^5dx+\dfrac13\int x^4dx-4\int x^3dx+\dfrac83\int xdx=\\=-\dfrac1{24}x^8+\dfrac13x^6+\dfrac1{15}x^5-x^4+\dfrac43x^2

4  Подставляем пределы и считаем

-\dfrac1{24}x^8+\dfrac13x^6+\dfrac1{15}x^5-x^4+\dfrac43x^2\Bigg|^2_{-1}=-\dfrac{32}3+\dfrac{64}3+\dfrac{32}{15}-16+\dfrac{16}{3}=\dfrac{63}{40}


Вычислить двойной интеграл xy^2 D: y=x, x^2 - 2 =y
4,4(83 оценок)
Ответ:
Kepka229
Kepka229
12.03.2020
Сначала определим, сколько действительных корней вообще может иметь данное уравнение. Рассмотрим функцию f(x) = 2^x - 4x . Её производная f'_x (x) = 2^x \ln{2} - 4 . Найдём её ноли.

f'_x (x) = 0 ;

2^x \ln{2} - 4 = 0 ;

2^x \ln{2} = 4 ;

2^x = 4/\ln{2} ;

x = \log_2{ ( 4/\ln{2} ) } ;

x = \log_2{4} - \log_2{ \ln{2} } ;

x = 2 - \frac{ \ln{ \ln{2} } }{ \ln{2} } \approx 2 - [-0.528766] = 2.528766 ;

При x < 2 - \frac{ \ln{ \ln{2} } }{ \ln{2} } , например при x = 0 : : : f'_x (x) < 0 ;

При x 2 - \frac{ \ln{ \ln{2} } }{ \ln{2} } , например при x = 5 : : : f'_x (x) 0 ;

При x = 0 функция f(x) = 2^0 - 4 \cdot 0 = 1 - 0 = 1 0 ;

При x = 2 функция f(x) = 2^2 - 4 \cdot 2 = 4 - 8 = -4 < 0 ;

При x = 5 функция f(x) = 2^5 - 4 \cdot 5 = 32 - 20 = 12 0 ;

А это значит, что до точки x = 2 - \frac{ \ln{ \ln{2} } }{ \ln{2} } функция f(x) строго убывает, причём переходя от положительных при x = 0 значений к отрицательным, а значит имеет до указанной точки ровно один корень. А далее от точки x = 2 - \frac{ \ln{ \ln{2} } }{ \ln{2} } функция f(x) строго возрастает, причём переходя от отрицательных значений к положительным при x = 5 , а значит, имеет после указанной точки ровно ещё один корень.

Таким образом, заданное уравнение имеет РОВНО ДВА действительных корня. Найдём их.

Во-первых, у уравнения есть очевидный корень x_1 = 4 , заявленный и в приведённом условии. Далее порассуждаем практически:

x=0) 2^0 4 \cdot 0 ;

x=1) 2^1 < 4 \cdot 1 ;

x=2) 2^2 < 4 \cdot 2 ;

x=3) 2^3 < 4 \cdot 3 ;

x=4) 2^4 = 4 \cdot 4 ;

x=5) 2^5 4 \cdot 5 ;

При x 4 , производная (2^x)'_x = 2^x \ln{2} 2^4 \ln{\sqrt{e}} = 8 больше производной (4x)'_x = 4, т.е. дальше левая часть уравнения, растёт быстрее, чем правая, а значит, других корней при x 4 быть не может.

При x < 0 , левая часть уравнения положительна, а правая отрицательна, так что других корней при x < 0 быть не может.

Однако, как видно из оценок (x=0) и (x=1) уравнение явно имеет решение на x \in (0,1), так как при сравнении двух непрерывных функций на этом интервале меняется знак.

Предположим, что второе решение рационально. Тогда слева мы будем иметь арифметический корень некоторой степени из двойки, возведённой в некоторую другую несократимую и меньшую степень, т.е. если x = \frac{p}{q} , где \{ p < q \} \in N , то: 2^x = 2^\frac{p}{q} = (\sqrt[q]2)^p < 2 . Это число, очевидно иррационально, что легко доказать от обратного методом Евклида. Однако справа должно быть рациональное число 4 \cdot \frac{p}{q} = \frac{4p}{q} , а значит, мы пришли к противоречию. Таким образом, второе решение иррационально.

Если, тем не менее, такой корень должен быть найден, то нам придётся привлечь некоторые не очень сложные знания из высшей математики, поскольку иначе данная задача не может быть решена.

В высшей математике используется множество дополнительных функций. Одна из них, функция Ламберта x = W(t) , по определению дающая решение, т.е. являющаяся обратной, к функции t = xe^x . Функция вводится аналогично, скажем, функции x = arctg(t) , являющейся решением уравнения t = tg{x} , но в отличие от арктангенса, функция Ламберта используется намного реже в прикладных задачах (в основном в задачах теплопроводности), и поэтому – менее широко известна. Функция вводится на расширенной комплексной плоскости, т.е. алгебраически, а не арифметически, а значит по определению, может быть многозначной, и является таковой при отрицательных значениях аргумента t , хотя нам достаточно будет знать лишь её действительные значения, которых при отрицательных аргументах всегда два. Вид действительных ветвей функции Ламберта представлен на приложенном изображении.

Преобразуем наше уравнение к функции Ламберта:

2^x = 4x ;

(\frac{1}{2})^x = \frac{1}{4} \cdot \frac{1}{x} ;

x \cdot e^{ x \ln{ \frac{1}{2} } } = \frac{1}{4} ;

- x \ln{2} \cdot e^{ - x \ln{2} } = - \frac{ \ln{2} }{4} ;

Обозначим: y = - x \ln{2} , тогда:

y e^y = t = - \frac{ \ln{2} }{4} , отсюда через функцию Ламберта:

y = W(t) = W( -\frac{ \ln{2} }{4} ) ,

x = - \frac{y}{ \ln{2} } = - \frac{ W( -\frac{ \ln{2} }{4} ) }{ \ln{2} } ;

[[[ Продолжение на изображении. Лимит сервиса 5000 символов не позволяет дописать решение. ]]]

Давным-давно мне задали : 2 в степени х=4х и сказали: решишь - поступишь в упи (свердловск) я решил
Давным-давно мне задали : 2 в степени х=4х и сказали: решишь - поступишь в упи (свердловск) я решил
4,5(46 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ