Уравнения перепишем: 3х² + 4у = 0 ⇒ 4у = -3х² ⇒ у = -3/4 х² - на графике это парабола 2х - 4у -1 = 0 ⇒ 4у = 2х -1 ⇒ у = 2/4 х - 1/4 - на графике это прямая. Найдём границы интегрирования -3/4 х² = 1/2 х - 1/4 |·4 -3х² = 2х - 1 3х³ + 2х -1 = 0 Ищем корни по чётному коэффициенту: х1 = -1 и х2 = 1/3 Тепер надо найти 2 интеграла и выполнить вычитание а) Интеграл, под интегралом -3/4 х²dx в пределах от -1 до 1/3 = = -3х³/12 = -х³/4| в пределах от -1 до 1/3 = - 1/108 -1/4 = 28/108 = -14/54 = -7/27 б) интеграл, под интегралом (1/2х -1/4)dx в пределах от -1 до 1/4 = = 1/2 х²/2 - 1/4 х| в пределах от -1 до 1/3 = -5/6 S = -7|27 - ( -7|27) = -31/54 ответ: 31/54 (берём без минуса, т.к. минус показывает, что фигура лежит в отрицательной части)
Уравнения перепишем: 3х² + 4у = 0 ⇒ 4у = -3х² ⇒ у = -3/4 х² - на графике это парабола 2х - 4у -1 = 0 ⇒ 4у = 2х -1 ⇒ у = 2/4 х - 1/4 - на графике это прямая. Найдём границы интегрирования -3/4 х² = 1/2 х - 1/4 |·4 -3х² = 2х - 1 3х³ + 2х -1 = 0 Ищем корни по чётному коэффициенту: х1 = -1 и х2 = 1/3 Тепер надо найти 2 интеграла и выполнить вычитание а) Интеграл, под интегралом -3/4 х²dx в пределах от -1 до 1/3 = = -3х³/12 = -х³/4| в пределах от -1 до 1/3 = - 1/108 -1/4 = 28/108 = -14/54 = -7/27 б) интеграл, под интегралом (1/2х -1/4)dx в пределах от -1 до 1/4 = = 1/2 х²/2 - 1/4 х| в пределах от -1 до 1/3 = -5/6 S = -7|27 - ( -7|27) = -31/54 ответ: 31/54 (берём без минуса, т.к. минус показывает, что фигура лежит в отрицательной части)
Взаимно простые числа - не имеющие общих делителей, тогда иеем:
а) 6 = 2 * 3
12 = 4 * 3
14 = 2 * 7
г) 28 = 7 * 4
36 = 4 * 9
38 = 2 * 19
б)18 = 2 * 9
15 = 3 * 5
20 = 4 * 5
д) 30 = 6 * 5
22 = 2 * 11
84 = 7 * 12
в) 21 = 7 * 3
24 = 8 * 3
26 = 2 * 13
е) 35 = 5 * 7
34 = 17 * 2
42 = 7 * 6