М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
лунтик73
лунтик73
04.03.2022 09:29 •  Математика

Кслову подобрать однокоренное слово

👇
Ответ:
BvbNo9
BvbNo9
04.03.2022
Задание - задача - озадачить - задать 
4,4(1 оценок)
Ответ:
LEXUS2705
LEXUS2705
04.03.2022
Заданный вот это слово уних один корень
4,5(59 оценок)
Открыть все ответы
Ответ:
dasha12328
dasha12328
04.03.2022

Зауважимо, що якщо всі частини будуть прямокутної форми, то максимальна кількість частин, на які розрізаний квадрат, дорівнює 18. Це випливає з того, що якщо розрізати квадрат на прямокутники зі сторонами 1×2, то ми отримаємо 32 частини, а якщо на прямокутники зі сторонами 1×1, то ми отримаємо 16 частин.

Оскільки не всі частини повинні бути прямокутних, то можна розглянути дві такі частини, які мають різний периметр і обидві не є прямокутними.

Зафіксуємо пряму лінію, яка фактично розрізає квадрат на дві частини. Тоді можна помітити, що можливі три варіанти для форми однієї з частин: прямокутник, трикутник або багатокутник з більш ніж чотирма вершинами.

Якщо одна з частин має прямокутну форму, то максимальна кількість частин буде такою ж, як у випадку прямокутних частин. Якщо одна з частин має форму трикутника, то інша частина повинна складатися з двох трикутників або бути більш ніж чотирьохкутником. У першому випадку ми отримуємо три частини, у другому - п'ять. Якщо одна з частин має форму більш ніж чотирьохкутника, то інша частина повинна бути менш ніж чотирьохкутником і ми отримуємо як мінімум дві частини.

Отже, максимальна кількість частин, яку можна отримати при розрізанні квадрата на частини однакового периметра з урахуванням можливості не прямокутної форми частин, дорівнює 21. Одне з можливих розбиттів наведено на малюнку нижче.

Площа: 16 дм²


Квадрат 8×8 розрізали лініями клітин на частини однакового периметра. Яку найбільшу кількість частин
4,8(9 оценок)
Ответ:
kolyakorolev
kolyakorolev
04.03.2022

Максимальное количество частей, которое можно получить, равно 32. Докажем это.

Рассмотрим произвольное разрезание квадрата на части одинакового периметра, состоящее из n прямоугольников. Пусть P будет периметром каждого из прямоугольников, а A – площадью всего квадрата. Тогда периметр всего квадрата равен 32, а его площадь равна 64. На основании формулы для площади S = a * b и соотношения P = 2 * (a + b) получаем:

A = a1 * b1 + a2 * b2 + ... + an * bn,

где ai и bi – соответствующие стороны i-го прямоугольника.

Исходя из условий задачи, все прямоугольники имеют одинаковый периметр P. Следовательно, для каждого из них выполняется условие P = 2 * (a + b), откуда

a + b = P / 2.

Выразим a через b:

a = P / 2 - b.

Тогда

A = b1 * (P / 2 - b1) + ... + bn * (P / 2 - bn) =

= (P / 2) * (b1 + ... + bn) - (b1^2 + ... + bn^2) <=

<= (P / 2) * (b1 + ... + bn),

где последнее неравенство следует из того, что сумма квадратов любых n чисел не превосходит квадрата их суммы.

Таким образом, площадь всего квадрата A не превосходит (P / 2) * n, где n – количество прямоугольников в разрезании. Из этого вытекает, что

n <= 2 * A / P.

Подставляя значения P = 32, A = 64, получаем

n <= 4,

то есть нельзя разрезать квадрат на более чем 4 прямоугольника одинакового периметра. Однако существует разрезание на 4 прямоугольника, демонстрирующее, что максимальное количество частей равно 32:

4,8(51 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ