Сколько сантиметров проволоки необходимо для изготовления проволочного каркаса прямоугольного параллелепипеда,измерения которого равны 3 см,5см и 6 см?
Сказ - вид литературно-художественного повествования, построенного как рассказ лица, позиция и речевая манера которого отличны от точки зрения и стиля самого автора. Столкновение и взаимодействие этих смысловых и речевых позиций лежит в основе художественного эффекта сказа”. Сказ подразумевает повествование от первого лица, причем речь сказителя должна быть мерной, напевной, выдержанной в характерной для данного человека манере.
Рассказчика, как такового, “Левше” нет, но по остальным пунктам произведение вполне может быть названо сказом. “Выговор автора создает впечатление, что рассказ ведет какой-то деревенский житель, простой, но в то же время (судя по рассуждениям) образованный и мудрый. Со сказками “Левшу” роднит подтекст, ведь часто в них присутствует ненавязчивая, часто добродушно-снисходительная насмешка над “власть имущими”.
“Левша” является произведением, в котором Лесков, непревзойдённый мастер сказа, мастерски выделил основные черты русского национального характера и показал их на примере своих героев, в особенности Левши. Автор, чтобы сделать это, использует различные языковые средства выразительности, такие как использование “народных” словечек (“нимфозория” – инфузория, “укушетка” – кушетка и т. д) . Это придаёт “Левше” особый “шарм”.
Можно найти несколько пределов данной числовой последовательности. Для этого нужно посмотреть, что произойдет с ней при стремлении к бесконечности с разными знаками, и в "опасных" точках.
"Опасные" точки сразу видны, это: 1) - знаменатель обращается в 0. 2) - по обычаю проверяется эта точка.
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов: (при →∞)
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
(при →∞)
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
(при →∞)
Итак: 1) →+∞ предел равен 2) →-∞ предел равен
3) →0 предел равен:
4) → По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - мы получаем отрицательное основание).
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).