Пошаговое объяснение:
64 мин. Из пункта А в пункт Б велосипедист вышел. Через 48 минут от точки А за ним поехал мотоциклист и прибыл в точку Б одновременно с велосипедистом. Сколько минут велосипедист находился в дороге, если известно, что его скорость в четыре раза меньше скорости мотоциклиста. Расстояние между A и B не указано, возьмем 1. 48 минут = 48/60 часов = 4/5 часов. Формула движения: S = v * t S- расстояние t - время y - скорость X - скорость велосипедиста. 4х - скорость мотоциклиста. 1 / x - время в пути велосипедиста. 1 / 4x - время мотоциклиста.1 / x = 1 / 4x TOTAL FRIEND 5 * 4x = 20x, перезаписать числа Дополнительные множители, избавиться от дробей: 20 * 1 = 5 * 1 + 4x * 4 20 = 5 + 16x 16x = 15 x = 15/16 ( км / час) - скорость велосипедиста. 15/16 * 4 = 15/4 (км / ч) - Скорость мотоциклиста. 1: 15/16 = 16/15 (час) - время в пути велосипедиста. В минутах: 16/15 * 60 = 64 (минуты). Чтобы узнать время мотоциклиста: 1: 15/4 = 4/15 (часы) = 16 (минуты). Вышло за 48 минут: 48 + 16 = 64 (минуты).64 = 64 Решение верное.
1) 2х-х²>0
х²-16≠0
Эти условия должны выполняться одновременно.
х*(2-х)>0, первое неравенство решим методом интервалов, положительное подлогарифмическое выражение достигается, когда х∈((0;2)), а второе, когда х≠±4, иначе не будет существовать дробь, но в пересечении ОДЗ такая х∈(0;2)
2) х-3≠1
х-3>0
х²+6х-16>0
после преобразования первое условие х≠4
второе х>3
третье тоже решается с метода интервалов,
Найдем корни левой части неравенства
х₁,₂=-3±√(9+16)=-3±5 Корни -8 и 2 разобьют область определения на интервалы (-∞;-8);(-8;2);(2;+∞) установим знаки на каждом из них.
Положительный трехчлен при х∈(-∞;-8)∪(2;+∞)
Найдем теперь пересечение всех трех условий. т.е. одновременное их выполнение. ОДЗ получим (3;4)∪(4;+∞)
3) подкоренное выражение неотрицательно, когда ㏒₁/₃(х²+2х)≥0, второе условие (х²+2х)>0
Чтобы решить неравенство первое, вспомним, что логарифм. функция при основании одна треть будет убывающей, поэтому
х²+2х≤(1/3)°, х²+2х-1≤0
Приравняем к нулю левую часть. х²+2х-1=0
х₁,₂=-1±√(1+1)
Корни -1-√2 и -1+√2 разобьют обл. опр. на интервалы
(-∞;-1-√2);(-1-√2;-1+√2);(-1+√2;+∞)
Решением неравенства х²+2х-1≤0 будет отрезок [-1-√2;-1+√2], а решением неравенства (х²+2х)>0, или х*(х+2)>0 будет объединение интервалов (-∞;-2)∪(2;+∞)
А ОДЗ - это пересечение двух решений. Им будет
[-1-√2;-2)∪(0;-1+√2]