Для того, чтоб найти среднее арифметическое необходимо значения сложить и разделить на количество значений, среди которых необходимо найти среднее арифметическое значение
А) (4 + 6) / 2 = 10 / 2 = 5. Среднее арифметическое чисел 4 и 6 это число 5.
Б) (3 + 1/2) / 2 = 3 1/2 : 2 = 7/2 : 2 = 7/2 * 1/2 = 7/4 = 1 3/4. Среднее арифметическое чисел 3 и 1/2 это число 1 3/4.
В) (1 1/8 + 1/2) / 2 = (9/8 + 1/2) / 2 = (9/8 + 4/8) / 2 = 13/8 : 2 = 13/8 * 1/2 = 13/16. Среднее арифметическое чисел 1 1/8 и 1/2 это число 13/16.
Г) (3 2/3 + 2 1/4) / 2 = (11/3 + 9/4) / 2 = (44/12 + 27/12) / 2 = 71/12 : 2 = 71/12 * 1/2 = 71/24 = 2 23/24. Среднее арифметическое чисел 3 2/3 и 2 1/4 это число 2 23/24.
Пошаговое объяснение:
Пошаговое объяснение:
1.
a = b + 9 - длина больше.
S = a*b = 36 = площадь
(b+9)*b = 36
b² + 9*b - 36 = 0 - квадратное уравнение.
Дискриминант - D = 9² + 4*36 = 225, √225 = 15
b = 3, a = 3+9 = 12 - длины сторон
P = 2*(a +b) = 2*(12+3) = 30 см - периметр - ответ.
2. Найти стороны треугольника.
b = a - 14 - второй катет.
c = a + 2 - гипотенуза меньше катета
По теореме Пифагора: a² + b² = c²
a² + (a-14)² = (a+2)²
a² + a² - 28*a + 196 = a² + 2a + 4 - упрощаем
a² - 32*a + 192 = 0 - квадратное уравнение.
D = 256, √256 = 16
a = 24 см - катет
b = 24 - 10 = 10 см - катет
с² = 576 + 100 = 676.
с = √676 = 26 - гипотенуза.
ОТВЕТ: 10 см, 24 см и 26 см.
3. Найти два числа.
Два последовательных числа записываем в виде: n и (n+1).
Записываем уравнение по условию задачи.
n² + (n+1)² = 545
n² + n² + 2*n + 1 = 545 - упрощаем.
2*n² + 2*n - 544 = 0 и ещё сокращаем на 2.
n² + n - 272 = 0 - квадратное уравнение
D = 1089, √1089 = 33.
n = 16, (n+1) = 17 - числа - ОТВЕТ
Vплота=Vтечения реки, =>
3:3=1час
ответ: время =1 час