М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
svr2
svr2
30.07.2020 22:59 •  Математика

Для вышивки израсходовали 24 катушки золотых ниток,а серебряных на 13 меньше. сколько всего катушек ниток израсходовали. ?

👇
Ответ:
kjhf1234554321
kjhf1234554321
30.07.2020
1)24-13=11(к)-серебрянных ниток израсходовали
2)24+11=35(к)-ниток всего исзрасходовали

ответ:35 катушек ниток израсходовали.
4,5(67 оценок)
Открыть все ответы
Ответ:
mironmashstem
mironmashstem
30.07.2020

Пошаговое объяснение:

здесь не будем заморачиваться тройными интегралами. посмотрим на наши поверхности

1 страшная формула - это однополостный гиперболоид

две других - это плоскости

объем тела, содержащегося между плоскостями z = а и z = Ь, выражается формулой:

\displaystyle \int\limits^a_b {S(z)} \, dz,   где S (z) — площадь сечения тела плоскостью, перпендикулярной к оси ординат в точке z.

плоскость, перпендикулярная оси Оz, в точке с аппликатой z пересекает гиперболоид по эллипсу

запишем наш эллипс

\displaystyle \frac{x^2}{16} +\frac{y^2}{9} =1+\frac{z^2}{16}

теперь нам надо каноническое уравнение нашего эллипса

\displaystyle \frac{x^2}{16(1+z^2/16)} +\frac{y^2}{9(1+z^2/16)}=1

упростим

\displaystyle \frac{x^2}{16+z^2} +\frac{y^2}{(9/16)(16+z^2)} =1

площадь этого замечательного гиперболоида вычисляется по формуле

S=πab

у нас

\displaystyle a =\sqrt{16+z^2} ; \qquad b=\frac{3}{4} \sqrt{16+z^2}

отсюда

S=π*(3/4)(16+z²)

вот, собственно, и все "загогулины"

остался только объем

\displaystyle V=\frac{3}{4} \pi \int\limits^2_0 {(16+z^2)} \, dz = \pi \bigg (\frac{3}{4}*16z\bigg |_0^2+\frac{3}{4}*\frac{z^3}{3} \bigg |_0^2 \bigg )= \pi (2+24)=26\pi


Вычислить объем тела, ограниченного поверхностями
4,4(89 оценок)
Ответ:
Maks2801
Maks2801
30.07.2020
ОДЗ x>0
(log²(2)x-2log(2)x)²+36log(2)x+45-18log²(2)x<0
(log²(2)x-2log(2)x)²-18(log²(2)x-2log(2)x)+45<0
log²(2)x-2log(2)x=a
a²-18a+45<0
a1+a2=18 U a1*a2=45⇒a1=3 U a2=15
3<log²(2)x-2log(2)x<15
log(2)x=b
3<b²-2b<15
{b²-2b>3⇒b²-2b-3>0
{b²-2b<15⇒b²-2b-15<0
b1+b2=2 U b1*b2=-3⇒b1=-1 U b2=3
b<-1 U b>3
b3+b4=2 U b3*b4=-15⇒b3=-3 U b4=5
-3<b<5
-3<b<-1 U 3<b<5
-3<b<-1⇒-3<log(2)x<-1⇒1/8<x<1/2
3<b<5⇒3<log(2)x<5⇒8<x<32
ответ x∈(1/8;1/2) U (8;32)
4,8(62 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ