А) Сумма арифметической прогрессии a1 = 100, d = 1, n = 100 S(100) = (100 + 199)*100/2 = 299*50 = 14950. Нам надо разбить этот ряд на два ряда с суммой 14950/2 = 7475 каждый. Пусть это будет ряд от 100 до 100+n-1, всего n членов. S(n) = (100 + 100 + n - 1)*n/2 = (199 + n)*n/2 = 7475 n^2 + 199n = 7475*2 = 14950 n^2 + 199n - 14950 = 0 D = 199^2 + 4*14950 = 39601 + 59800 = 99401 ~ 315 (не точный квадрат) n = (-199 + 315)/2 = 116/2 = 58. Точно не получается, но можно подобрать. S(58) = (100 + 157)*58/2 = 257*29 = 7453 S(59) = (100 + 158)*59/2 = 258/2*59 = 129*59 = 7611 А нам надо 7475, то есть на 136 меньше, чем 7611. Берем первый ряд: 100, 101, 102, ..., 135, 137, 138, ..., 158, 159. И второй ряд: 136, 160, 161, ..., 199. ответ: да, это хорошее множество.
б) Сумма геометрической прогрессии b1 = 2, q = 2, n = 200 S(200) = b1*(q^n - 1)/(q - 1) = 2*(2^200 - 1)/(2 - 1) = 2*(2^200 - 1) Нужно разделить на два ряда с суммой 2^200 - 1 каждый. Но это невозможно, потому что последний член 2^200 больше суммы. ответ: нет, это не хорошее множество.
1) AB - от А(х1;y1) до В(x2;y2) - в общем виде линейная функция у=kx+b, где
k=(y2-y1)/(x2-x1), b=x1-0, следовательно подставив значения из условия
k=(4-1)/(6-0)=3/6=1/2=0,5, b=1-0=1, получаем уравнение прямой АВ y=0,5x+1
2) AC - подставляем так же значения точек А и С - k=(y2-y1)/(x2-x1), b=x1-0,
следовательно k=(5-1)/(3-0)=4/3, b=1-0=1, уравнение АС y=(4/3)x+1
3) BC - аналогично подставляем значения точек В и С - k=(5-4)/(3-6)=1/(-3)=(-1/3),
b=6-0=6, следовательно для ВС у=(-1/3)x+6
Точки можно легко проверить,подставив в уравнения прямых, котрым они будут принадлежать - игреки и иксы сойдутся для каждой точки.