Да, данная сумма чисел делится на 2007.
Пошаговое объяснение:
Преобразуем сумму 1 + 2 + 3 + + 2005 + 2006 + 2007 к следующему виду:
1 + 2 + 3 + + 2005 + 2006 + 2007 = 2007 + 1 + 2006 + 2 + 2005 + 3 + 2004 + ... + 1003 + 1004 = 2007 + (1 + 2006) + (2 + 2005) + (3 + 2004) + ... + (1003 + 1004).
Сумма каждой пары слагаемых внутри скобок равна 2007, а всего общее количество таких пар слагаемых составляет 1003, следовательно можем записать:
2007 + (1 + 2006) + (2 + 2005) + (3 + 2004) + ... + (1003 + 1004) = 2007 + (2007) + (2007) + ( 2007) + ... + (2007) = 2007 + 1003 * 2007 = 2007 * (1 + 1003) = 2007 * 1004.
ответ: данная сумма чисел делится на 2007.