Сначало наливаем в 7-ух летровую банку , и переливаем 2 литра в 2-ух летровую банку. В первой банке остаётся 5 а во второй 2 , 2 литра вылеваем , и опять переливаем из первой банки два литра во вторую . В итоге в первой банке остается 3 литра . Надеюсь понятно и правельно :3
Это уравнение является уравнением Бернулли. Очевидно, что функция является решением уравнения. Разделим обе части на , предполагая, что : . Сделаем замену , тогда и уравнение принимает вид . Получили линейное неоднородное уравнение. Решим его методом вариации постоянной. Для этого найдем решение соответствующего однородного уравнения: . Это уравнение с разделяющимися переменными. . Заменим постоянную C новой неизвестной функцией C(x) и в таком виде будем искать решение неоднородного уравнения: . Сделаем замену в интеграле: . Интеграл легко берется по частям (оставляю на вас): , где C - произвольная постоянная. Таким образом, . Вспоминаем, что , тогда - общее решение. Теперь воспользуемся начальным условием y(0) = 1: . Значит, искомая функция есть .