Для начала найдем три равные между собой дроби, которые в сумме образуют 1 / 2 :
1 / 2 ÷ 3;
Не нужно забывать, что при делении обыкновенной дроби необходимо делимое умножить на число, обратное делителю;
1 / 2 × 1 / 3 = 1 / 6;
На основании этих данных попробуем найти неравные дроби:
Первую дробь оставим как 1 / 6;
Вместо второй дроби возьмем половину первого;
1 / 6 ÷ 2;
1 / 6 × 1 / 2 = 1 / 12;
Вместо третьей дроби возьмем полторы от первой дроби;
1 / 6 × 1. 1 / 2;
1 / 6 × 3 / 2 = 3 / 12 = 1 / 4;
Проверяем, методом сложения:
1 / 6 + 1 / 12 + 1 / 4;
Приводим к общему знаменателю;
2 / 12 + 1 / 12 + 3 / 12;
6 / 12 = 1 / 2
ответ: 1 / 2 можно представить в виде суммы трех несократимых и неравных дробей - 1 / 6, 1 / 12, 1 / 4.
Пошаговое объяснение:
АВ - наклонная к обеим плоскостям. При этом основание перпендикуляра В1 из точки В на прямую пересечения плоскостей а и в - это проекция точки В на плоскость а. И - точно также - А1 - проекция точки А на в. Задано А1В1 = 12.
Нам задан угол АВВ1 (вот оно что!) = 30 градусов. Поэтому АА1 = АВ/2 = 12;
Треугольник АА1В1 - прямоугольный, поскольку АА1 перпендикулярно А1В1. Кроме того, оба его катета равны 12, отсюда гипотенуза АВ1 равна 12*корень(2).
Осталось рассмотреть треугольник (тоже прямоугольный) АВВ1. Именно в нём есть угол ВАВ1, который и нужно найти по условию задачи. Но в этом треугольнике катет А1В1 = 12*корень(2), а гипотенуза равна 24, то есть он тоже равнобедренный, и угол ВАВ1 = 45 градусов :
если правильно я поняла то это след уравнения:
0,5*(2х-5)-8= -6,5 (9-4х)/8+0,875= 1 6,8*(5х-24)+2,3=4 (4х-9)*2,6+3,8=22
х-2,5-8=-6,5 9-4х=(1-0,875)*8 5х-24=(4-2,3)/6,8 4х-9=(22-3,8)/2,6
х=2,5+8-6,5= 4 9-4х=1 5х=24,25 4х= 7+9=16
х=4 8=4х х=24,25/5=4,85 х=16/4=4
х=2 х=4,85 х=4