Общее уравнение прямой
Ax + By + C = 0. (2.1)
Вектор n(А,В) ортогонален прямой, числа A и B одновременно не равны нулю.
Уравнение прямой с угловым коэффициентом
y - yo = k (x - xo), (2.2)
где k - угловой коэффициент прямой, то есть k = tg a, где a - величина угла, образованного прямой с осью Оx, M (xo, yo ) - некоторая точка, принадлежащая прямой.
Уравнение (2.2) принимает вид y = kx + b, если M (0, b) есть точка пересечения прямой с осью Оy.
Уравнение прямой в отрезках
x/a + y/b = 1, (2.3)
где a и b - величины отрезков, отсекаемых прямой на осях координат.
Уравнение прямой, проходящей через две данные точки - A(x1, y1) и B(x2, y2 ):
уравнения. (2.4)
Уравнение прямой, проходящей через данную точку A(x1, y1) параллельно данному вектору a(m, n)
уравнение. (2.5)
Нормальное уравнение прямой
rnо - р = 0, (2.6)
где r - радиус-вектор произвольной точки M(x, y) этой прямой, nо - единичный вектор, ортогональный этой прямой и направленный от начала координат к прямой; р - расстояние от начала координат до прямой
V=1/3пH(R1в квадрате + R1*R2 + R2 в квадрате) . Радиусы нам известны R1=10 R2=6. Нам нужно узнать только высоту. рассмотрим треугольник СКД , где угол СДК=60, СК-высота, проведенная из вершины С. СК-искомая высота. рассмотрим трапецию АБСД. (БН- высота, проведенная из вершины Б) НК=БС( т.к трапеция равнобедренная) пусть АН= КД=х. Тогда х+ 2*R1 +x=2*R2. 2х+12=20. 2х=8. х=4. в тругольнике СКД выразим тангенс угла в 60 градусов. tg60=СК/КД. СК=(корень из 3)*4. V=1/3*п* (корень из 3)*4 *(36 + 60 +100)= 784/3*п* корень из 3
2)48*4=192(км) проехал 2 автомобиль
3)212+192=404(км) расстояние между посёлками
Условие задачи с более длинным решением:
Из двух посёлков одновременно навстречу друг другу выехали два автомобиля. Один ехал со скоростью 53 км/ч и проехал до встречи 212 км. Определи расстояние между посёлками, если скорость второго была на 5км/ч меньше.
Решение:
1)212/53=4(ч) время
2)53-5=48(км) скорость 2 автомобиля
3)48*4=192(км) проехал 2 автомобиль
4)212+192=404(км) расстояние между посёлками