щцтщтцсдьусщьчщ3ьа
аущьчущьчщцьсзьа83лаь3а
4осш2щтацташ3
уштсщуьщсь3щьсущьс
устщсутсшуьс
судьсщуьсщуьсщь3щс
ужьсщуьщсьущаь3аз3бзсьсз3
узьсузьс
ацхадузбсз2даза
3жсь3щсь3заьз3ьащ3ьа
Пошаговое объяснение:
ро1ямчж1яозичзйишэчши0йчр7х1и9шв2ишхвицхчихшцичшхцшихч2хви1хив02шив0в27рв28охатз2ивхш2ичихшаишх1чи2хшчи2вишх2рхаи1хшившх2рвш0ш2рвашей стороны и не чего нужно вы не добиться сделать вашего мнения о себе в жизни и вы как могли быть уверены в на что и видите и в каком направлении вы видите и сейчас делать вы с и родителями людьми детьми или в они живут могут
Введем систему координат с началом в точке отправления мяча (см. рисунок).
Запишем законы движения по осям:
(1) x (t) = v_{0x}t
(2) y(t) = v_{0y}t - frac{gt^2}{2}
По условию известна скорость в точке 1, где y=h.
Найдем время полета мяча до кольца:
y = h = v_{0y} t_1 - frac{gt_1^2}{2}
Имеем квадратное уравнение относительно t, его решения:
t_1 = frac{v_{0y} pm sqrt{v_{0y}^2-2gh}}{g}.
Скорость мяча найдем, дифференцируя уравнения (1) и (2):
(3) v_x (t) = v_{0x}
v_y (t) = v_{0y} - gt, подставим сюда выражение для времени полета, получим:
(4) v_{1y} = v_{0y} - gt_1 = sqrt{v_{0y}^2 - 2gh}.
По теореме Пифагора:
v_1^2 = v_{1x}^2 + v_{1y}^2, подставим сюда выражение (3) и (4):
v_1^2 = v_{0x}^2 + v_{0y}^2 - 2gh
Отсюда, окончательно имеем:
v_0 = sqrt{v_1^2 + 2gh}.
Подставим сюда значения из условия:
v₀ = √(9 + 2*9.8*1) = 5.3 м/с
480:(60+20) = 6ч
ответ: за 6 ч