Фигура, ограниченная гиперболой у = 5/х и прямыми у = 4х + 1 и х = 2 (с дополнительным условием у = 0), представляет собой треугольник и криволинейную трапецию. Находим крайнюю левую точку - пересечение прямой с осью Ох. 4х +1 = 0, х = -1/4 = -0,25. Находим точку пересечения прямой и гиперболы. 5/х = 4х + 1. Получаем квадратное уравнение: 4х² + х - 5 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=1^2-4*4*(-5)=1-4*4*(-5)=1-16*(-5)=1-(-16*5)=1-(-80)=1+80=81;Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√81-1)/(2*4)=(9-1)/(2*4)=8/(2*4)=8/8=1;x_2=(-√81-1)/(2*4)=(-9-1)/(2*4)=-10/(2*4)=-10/8=-1,25. Это значение не принимаем - это точка пересечения с гиперболой в третьей четверти. Ордината точки пересечения у = 5/1 = 5. Находим площадь первой части фигуры: S1 = (1/2)*(1+0,25)*5 = 3,125 кв.ед. Площадь второй части равна интегралу: интеграл от произведения функции на константу есть эта константа на интеграл от данной функции.
Возьмём два наполовину заполненных бидона, их суммарный вес 37 кг, а именно18,500+18,500=37 (кг)Перельём всё молоко в один бидон. Получим полный бидон (35 кг) и пустой бидон. Следовательно, что пустой бидон весит 37-35=2 (кг Предположим, что вес бидона - х кг, тогда вес молока в полном бидоне (35-х) кг, а вес наполовину заполненного бидона масса наполовину заполненного молоком бидона 18,5 кгсогласно этим данным составим и решим уравнение:0,5(35-х)+ х=18,517,5+0,5х=18,5 0,5х=18,5-17,50,5х=1х=1:0,5х=2 (кг) - масса пустого бидона. кг=1 000 г ⇒ 35 кг=35 000 г ⇒ 18кг 500г=18 500 г 18 500+18 500=37 000 (г) или 18 500·2=37 000 (г) или 37 (кг) 37 000-35 000=2 000 (г) или 2 (кг) - масса пустого бидона.ответ : 2 кг весит пустой бидон.