4999999999 и 50000000000
Примерный алгоритм поиска:
Понятно, что первое число должно заканчиваться на 9, чтобы у следующего за ним натурального числа сумма цифр могла отличаться более чем на 1 ( например, 17 не подойдет, так как у него сумма цифр 8, а у 18 сумма цифр 9, нам же нужно, чтобы сумма цифр отличалась на число, кратное 5)
Итак, смотрим числа, оканчивающиеся на 9, сумма цифр в которых кратна 5, например 19. Следующее за ним натуральное число 20, сумма его цифр 2, не кратна 5. А у какого кратна? Например, у числа, состоящего из 5 и нулей.
Итак, что мы имеем: первое число с 9 на конце, а следующее - пятерка с нулями. Перебираем: 49,499,4999... Вот оно! 4999999999 - сумма цифр 85 кратна 5, у следующего за ним тоже.
Возможно, есть и меньшие числа, но эти интуитивно понятно, как искать. Если есть вопросы - пишите!
АС=12 см, АВ=6 см
Пошаговое объяснение:
1) ∠АСВ = 90°- ∠АСД = 90°- 60°= 30°.
∠АСВ = ∠САД - как внутренние накрест лежащие углы, следовательно, ∠САД = 30°.
2) ∠САВ = 90°- ∠САД = 90°- 30°= 60°, следовательно:
∠ЕВА = 180°- ∠ВЕА - ∠САВ = 180°- 90° - 60° = 30°.
3) В прямоугольном треугольнике АЕВ катет АЕ равен 3 см и лежит против угла 30°, следовательно, гипотенуза АВ = 3 * 2 = 6 см,
а длина катета ВЕ равна:
√(6^2 - 3^2) = √ (36-9) = √ 27 = √9 *3 = 3√3
4) В прямоугольном треугольнике ВЕС катет ЕВ лежит против угла 30°, следовательно, гипотеза ВС равна:
ВС = 2*ЕВ = 2*(3√3) = 6√3 см
5) В прямоугольном треугольнике АВС стороны АВ и ВС являются катетами, а АС - гипотенузой:
АС^2 = АВ^2 + BC^2 = 6^2 + (6√3)^2 = 36 + 36*3 = 36 + 108 = 144
АС = √144 = 12 см
ответ: АС=12 см, АВ=6 см
62= 36+15+11