ответ
НОД(55, 2) = 1
НОК(55, 2) = 110
НОД(66, 7) = 1
НОК(66, 7) = 462
Пошаговое объяснение:
Т.е. мы получили, что:
55 = 5•11
2 - простое число.
Находим общие множители (общих множителей нет, т.е. числа 55 и 2 взаимно-простые).
НОД(55, 2) = 1
Чтобы найти НОК объединяем множители и перемножаем их:
НОК(55, 2) = 2•5•11 = 110
Или можно воспользоваться формулой:
НОК(a, b) = (a•b)/НОД(a, b)
НОК(55, 2) = (55•2)/НОД(55, 2) = 110
Т.е. мы получили, что:
66 = 2•3•11
7 - простое число.
Находим общие множители (общих множителей нет, т.е. числа 66 и 7 взаимно-простые).
НОД(66, 7) = 1
Чтобы найти НОК объединяем множители и перемножаем их:
НОК(66, 7) = 2•3•7•11 = 462
Или можно воспользоваться формулой:
НОК(a, b) = (a•b)/НОД(a, b)
НОК(66, 7) = (66•7)/НОД(66, 7) = 462
1)Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
3800 = 2 · 2 · 2 · 5 · 5 · 19
11400 = 2 · 2 · 2 · 3 · 5 · 5 · 19
Общие множители чисел: 2; 2; 2; 5; 5; 19
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (3800; 11400) = 2 · 2 · 2 · 5 · 5 · 19 = 3800
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
11400 = 2 · 2 · 2 · 3 · 5 · 5 · 19
3800 = 2 · 2 · 2 · 5 · 5 · 19
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (3800; 11400) = 2 · 2 · 2 · 3 · 5 · 5 · 19 = 11400
Наибольший общий делитель НОД (3800; 11400) = 3800
Наименьшее общее кратное НОК (3800; 11400) = 11400
2)Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
1500 = 2 · 2 · 3 · 5 · 5 · 5
4000 = 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5
Общие множители чисел: 2; 2; 5; 5; 5
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (1500; 4000) = 2 · 2 · 5 · 5 · 5 = 500
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
4000 = 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5
1500 = 2 · 2 · 3 · 5 · 5 · 5
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (1500; 4000) = 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5 · 3 = 12000
Наибольший общий делитель НОД (1500; 4000) = 500
Наименьшее общее кратное НОК (1500; 4000) = 12000
3)Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
180 = 2 · 2 · 3 · 3 · 5
630 = 2 · 3 · 3 · 5 · 7
350 = 2 · 5 · 5 · 7
Общие множители чисел: 2; 5
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (180; 630; 350) = 2 · 5 = 10
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем остальные числа. Подчеркнем в разложении меньших чисел множители, которые не вошли в разложение наибольшего числа.
630 = 2 · 3 · 3 · 5 · 7
180 = 2 · 2 · 3 · 3 · 5
350 = 2 · 5 · 5 · 7
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (180; 630; 350) = 2 · 3 · 3 · 5 · 7 · 2 · 5 = 6300
Наибольший общий делитель НОД (180; 630; 350) = 10
Наименьшее общее кратное НОК (180; 630; 350) = 6300
Пошаговое объяснение:
я мучался
сделай ответ лучшим