Ни один из них не может следить сам за собой. Ни какие двое не могут следить друг за другом. Пусть 001 следит за 003, тогда 003 следит за 002. 002 следит за 001, но тогда 003 следит за тем, кто следит за 001, а не за тем, кто следит за 004. Противоречие. Пусть 001 следит за 004, тогда 004 следит за 002, 002 за 005, 005 за 003, 003 за 001 и одновременно за 006. Противоречие. Пусть 001 следит за 005. Тогда 005 за 002, 002 за 006, 006 за 003, 003 за 007, 007 за 004, 004 за 001. Здесь никаких противоречий нет. ответ: 005 следит за 002.
Можно составить уравнение учтем следующее: х- это куры у- это утки z - это гуси составляем уравнение x+y+z=100 1*x это сумма которую потратим на кур 10*у это сумма потраченная на утку 50*z это сумма потраченная на гуся составляем уравнение 1*х+10*у+50*z=500 получается система уравнений х+у+z=100 1*x+10*y+50*z=500 из первого уравнения выразим х получится х=100-у-z получается такое уравнение, когда подставим второе (100-у-z)+10*e+50*z=500 открываем скобки -у-z+10*у+50*z=500-100 получаем 9*y+49*z=400 y=400-49z/9 y=351/9=39 y=39 уток А поскольку нам нужно купить количество птиц целое число, то чисто логически понимаем, что гуся сможем купить только одного Теперь подставим найденные значения в уравнение х=100-у-z то есть х=100-39-1=60 х=60 кур можно проверить вспомним второе уравнение 1*х+10*у+50*z=500 подставляем найденные значения 1*60+10*39+50*1=500 60+390+50=500 Получается на сумму 500 рублей мы сможем купить 60 кур, 39 уток и 1 гусь ответ: 60 кур, 39 уток и 1 гусь