Запиши числа,изпользуя более крупные единицы измерения величин. 15390грамм 1254см 3426мм 72ч 863дм в квадрате 22000м 395ц 1200мин 82604см в квадрате 928дм 700мм 4607см кубических
Найдём длину перпендикуляра из точки пересечения диагоналей ромба на сторону ромба (этот перпендикуляр равен половине высоты ромба). По свойству высоты h прямоугольного треугольника она равна среднему геометрическому из длин отрезков, на которые эта высота делит гипотенузу. h = √(4*25)= √100 = 10 см. Теперь находим длины половин диагоналей ромба как гипотенузы прямоугольных треугольников с катетами 25 и h, и 4 и h. (d1/2) = √(25² + 10²) = √(625 + 100) = √725 = 5√29 см. (d2/2) = √(4² + 10²) = √(16 + 100) = √116 = 2√29 см.
Діагоналі ромба ділять ромб на чотири одинакові прямокутні трикутники, тому площу ромба можна знайти вирахувавши площу одного з трикутників і помножити його на чотири, тобто знайшовши площу усіх цих чотирьох трикутників. Розглянемо трикутник AOB Оскільки квадрат висоти прямокутного трикутника, проведеної до гіпотенузи, дорівнює добутку проекцій катетів на гіпотенузу, то Площа трикутника дорівнює половині добутку довжини сторони трикутника на довжини висоти проведеної до цієї сторони