Вдвух вазах поровну кофет. после того как из одной вазы взяли 4 конфеты, а в другую положили 4 конфеты, в обеих вазах осталось 18 конфет. сколько конфет было в каждой вазе вначале? !
Задача на работу. В данном случае объем работы неизвестен, принимаем его за единицу (1). Таким образом, получаем, что Первый насос выполняет 1 единицу работы (A) за 12 лет (t) с производительностью () частей/год. Тогда второй выполняет тот же объем работ за 8 лет (A=1; t=8; ) и третий за "x" лет (A=1; t=x; ). Из условия известно, что три насоса вместе справляются с работой за 4 года (A=1; t=4; ). Значит общая производительность
Из условий задачи ясно, что x0 ⇒ можем обе части уравнения умножить на одно и то же число (24x). Получаем уравнение вида
Которое после сокращения примет вид
2x + 3x + 24 = 6x 5x + 24 = 6x
Переносим все члены уравнения с неизвестными в одну часть, известные - в другую. Получаем:
6x - 5x = 24
Или
x = 24.
ответ: 24 года понадобится третьему насосу, чтобы выкачать всю воду из бассейна.
сначала в каждой вазе было Х конфет, тогда в первой вазе (Х-4), а во второй (Х+4) всего 18конфет
(Х-4)+(Х+4)=18
2Х=18
Х=9
в первой вазе 9-4=5 конфет
во второй вазе Х+4=13 конфет