а) Обозначим точки пересечения лучей с отрезком BM — буквами P и R (см. рисунок), и пусть O — точка пересечения диагоналей параллелограмма, а N — точка пересечения луча AP и прямой BC.
Точка R делит медиану BM треугольника ABD в отношении 2 :1 считая от B. Следовательно, R лежит на медиане AO этого треугольника, то есть луч AR содержит диагональ AC .
б) Пусть L — точка пересечения AN и BD. Нужно найти площадь четырёхугольника LNCO. Пусть площадь параллелограмма равна S . Площадь треугольника BOC равна Найдём площадь треугольника BNL . Из подобия треугольников BPN и MPA следует, что
откуда
Теперь из подобия треугольников BNL и DAL следует, что их соответствующие высоты относятся как 1:4 , а поэтому высота треугольника BNL, проведённая к BN, составляет высоты параллелограмма, проведённой к стороне BC.
Поэтому
Следовательно, площадь четырёхугольника LNCO равна
Пошаговое объяснение:
Пошаговое объяснение:
АВ=ВС
P(ABC)=25 см
Длина наибольшей из сторон 9 см
Найти: AB и ВС.
Решение.
В условии говорится, что длина наибольшей из сторон равна 9 см. Это означает, что длина только одной из сторон равна 9 см, поэтому эта сторона не может быть боковой, то есть длина стороны AC равна 9 см (см. рисунок).
Так как периметр треугольника равна P(ABC)=AB+BC+AC=25 см. Отсюда
AB+BC+9 см=25 см
AB+BC=25 см - 9 см
AB+BC=16 см
Но, по условию АВ=ВС и поэтому
2·AB=16 см
AB=16:2 см = 8 см.
ответ: АВ=8 см, ВС=8 см.
б)y-6,5=12 y = 12 + 6,5 = 18,5
в)13,5-x=1,8 13,5 - 1,8 = x x = 11,7
г)15,4+k=15,4 k = 15,4 - 15,4 =0
д)2,8+j+3,7=12,5 j = 12,5 - 2,8 - 3,7 = 6
е)(5,6-r)+3,8=4,4 5,6 - r = 4,4 - 3,8 5,6 - 4,4 + 3,8 = r r = 5