На рисунке показана часть паркета, которую надо заменить. Каждый квадрат паркета составлен из четырех дощечек. Сколько всего нужно дощечек? Объясни, как решали задачу Коля и Юра. Коля: 4*6+4*3, Юра:4*(6+3).
В первом ряду 6 квадратов паркета, а во втором 3 по 4 дощечки. Коля посчитал по отдельности а потом сложил и получил 36 дощечек,а юра сложил первый и второй ряд (6+3) а потом умножил на 4 .
Каждая кость может выдать от 1 до 6 очков, таких костей три, значит, число возможных вариантов равно 6^3 = 216.
Далее, рассмотрим сумму очков на трех костях как сумму очков одной кости с суммой суммы очков двух других. Далее станет понятно, что имеется в виду. Свойство четности\нечетности суммы двух чисел можно выразить так: сумма двух четных - четное, сумма двух нечетных - четное, сумма четного и нечетного - нечетное. Очевидно, что первая кость, выдающая очки от 1 до 6 дает 3 четных и 3 нечетных значения. Рассмотрим теперь сумму двух других костей. Очевидно, что она лежит в диапазоне от 2 до 12. При это четные значения и варианты их получения выглядят так: 2 = 1 + 1 4 = 2 + 2 = 3 + 1 = 1 + 3 6 = 3 + 3 = 4 + 2 = 2 + 4 = 5 + 1 = 1 + 5 8 = 4 + 4 = 3 + 5 = 5 + 3 = 6 + 2 = 2 + 6 10 = 5 + 5 = 6 + 4 = 4 + 6 12 = 6 + 6
1 + 1 + 3 + 3 + 5 + 5 = 18 вариантов выпадения четных чисел
2 + 2 + 4 + 4 + 6 = 18 вариантов выпадения четных чисел. Можно посчитать и по-другому. 6^2 (общее число вариантов для двух костей) - 18 (четные варианты посчитанные выше) = 18. Возможно, это можно строго доказать и вообще не считая варианты, но я не силен в этом.
Итого, одна кость дает 3 четных и 3 нечетных значения. Сумма двух других дает 18 четных и 18 нечетных.
Каждая кость может выдать от 1 до 6 очков, таких костей три, значит, число возможных вариантов равно 6^3 = 216.
Далее, рассмотрим сумму очков на трех костях как сумму очков одной кости с суммой суммы очков двух других. Далее станет понятно, что имеется в виду. Свойство четности\нечетности суммы двух чисел можно выразить так: сумма двух четных - четное, сумма двух нечетных - четное, сумма четного и нечетного - нечетное. Очевидно, что первая кость, выдающая очки от 1 до 6 дает 3 четных и 3 нечетных значения. Рассмотрим теперь сумму двух других костей. Очевидно, что она лежит в диапазоне от 2 до 12. При это четные значения и варианты их получения выглядят так: 2 = 1 + 1 4 = 2 + 2 = 3 + 1 = 1 + 3 6 = 3 + 3 = 4 + 2 = 2 + 4 = 5 + 1 = 1 + 5 8 = 4 + 4 = 3 + 5 = 5 + 3 = 6 + 2 = 2 + 6 10 = 5 + 5 = 6 + 4 = 4 + 6 12 = 6 + 6
1 + 1 + 3 + 3 + 5 + 5 = 18 вариантов выпадения четных чисел
2 + 2 + 4 + 4 + 6 = 18 вариантов выпадения четных чисел. Можно посчитать и по-другому. 6^2 (общее число вариантов для двух костей) - 18 (четные варианты посчитанные выше) = 18. Возможно, это можно строго доказать и вообще не считая варианты, но я не силен в этом.
Итого, одна кость дает 3 четных и 3 нечетных значения. Сумма двух других дает 18 четных и 18 нечетных.
В первом ряду 6 квадратов паркета, а во втором 3 по 4 дощечки.
Коля посчитал по отдельности а потом сложил и получил 36 дощечек,а юра сложил первый и второй ряд (6+3) а потом умножил на 4 .