М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zilga1
zilga1
25.01.2023 01:27 •  Математика

Подскажите вычислите а) 56/70 : 280/600

👇
Ответ:
romakum24
romakum24
25.01.2023
=\frac{56}{70}* \frac{600}{280}= \frac{56*600}{70*280}= \frac{60}{7*5}= \frac{12}{7}
4,5(42 оценок)
Открыть все ответы
Ответ:
alehanagaitsewa
alehanagaitsewa
25.01.2023

Приступим к уроку мат. анализа

1)

a) Для поиска вертикальных асимптот нужно рассмотреть односторонние пределы в окрестностях несуществования функции

f(x)=\frac{x-9}{x-3}

\lim_{x \to 3-0} f(x)=+\infty, \lim_{x \to 3+0} f(x)=-\infty

x=3 - вертикальная асимптота

]\lim_{x \to 9-0} f(x)=-\infty, \lim_{x \to 9+0} f(x)=+\infty

x=9 - вертикальная асимптота

ответ: 12

 

б) f(x)=\frac{4x(x^2+x+1)}{(x-2)(x-3)}

\lim_{x \to 0-0} f(x)=-\infty, \lim_{x \to 0+0} f(x)=+\infty

\lim_{x \to 2-0} f(x)=+\infty, \lim_{x \to 2+0} f(x)=-\infty

\lim_{x \to 3-0} f(x)=-\infty, \lim_{x \to 3+0} f(x)=+\infty

x=0, x=2, x=3 - вертикальные асимптоты

ответ: 5

________________________________________________________________________

2) \sqrt[9]{x+1}=1+\frac{1}{9}x+\frac{\frac{1}{9}(\frac{1}{9}-1)}{2}x^2

\sqrt[9]{1+0,4}=1+1/9-(4/81)*0,4^2=2099/2025\approx1,037

 

________________________________________________________________________

3)f(x)=\frac{4x+5}{(x-5)^3}

f'(x)=\frac{-8x-35}{(x-5)^4}

x=-35/8

При переходе через эту точку производная меняет свой знак c + на -, т.е. это точка локального максимума

ответ: -4,375

________________________________________________________________________

4)f(x)=\frac{2x+6}{x^2-5}

f'(x)=\frac{-2(x^2+6x+5)}{(x-\sqrt{5})^2(x+\sqrt{5})^2}

критические точки = x=-√5, x=√5, x=-1, x=-5

производная меняет свой знак с - на + в точке x=-5 - точка лок. минимума

ответ: -5

________________________________________________________________________

5)

а) Найдем точки пересечения

    6x-4=x²+5x-6

    x²-x-2=0

x₁=-1 x₂=2

S=\int\limits^{2}_{-1} {2+x-x^2} \, dx=2x+\frac{x^2}{2}-\frac{x^3}{3}|_{-1}^2= 9/2

 

б) Точки пересечения

   -x+7=x²-x+3

    x²-4=0

x₁=-2, x₂=2

\int\limits^2_{-2} {(4-x^2)} \, dx=4x-\frac{x^3}{3}|_{-2}^2=\frac{32}{3}

________________________________________________________________________

6)

a) f(x,y)=\frac{-5x-2y}{x+3y}

    f_x^{'}=\frac{-13y}{(x+3y)^2}, f'_x(A)=-\frac{52}{81}

    f'_y=\frac{13x}{(x+3y)^2}, f'_y(A)=-\frac{39}{81}

 

направляющий вектор {1/√10, 3/√10}

f'_e=-\frac{169}{81\sqrt{10}}

 

б) f(x, y) = (x-y)arctg(2x+y)

    f'_x=arctg(2x+y)+\frac{2(x-y)}{1+(2x+y)^2}, f'_x(A)=-6

    f'_y=-arctg(2x+y)+\frac{x-y}{1+(2x+y)^2}, f'_y(A)=-3

 

направляющий вектор {-2/√29, -5/√29}

f'_e=\frac{27}{\sqrt{29}}

_______________________________________________________________________

7) f'_x=2x-4y-10=0, f'_y=-2y-4x-20=0

x=-3, y=-4 - стационарная точка

f''_{xx}=20, f''_{xy}=-4, f''_{yy}=-2

\left[\begin{array}{cc}2&-4\\-4&-2\end{array}\right]=-20<0

экстремумов нет

 

4,8(66 оценок)
Ответ:
bulochka228
bulochka228
25.01.2023

|x+a| + x² < 2

1) x+a ≥ 0

х ≥ -а

x + a + x² < 2

х² + х + (а - 2) < 0

Рассмотрим функцию: у = х² + х + (а - 2), её график - квадратная парабола веточками вверх. Следовательно, неравенство x + a + x² < 2 справедливо в интервале между корнями уравнения х² + х + (а - 2) = 0

D = 1 - 4· (а - 2) = 1 - 4a + 8 = 9 - 4a

Уравнение имеет решение, если D ≥ 0

9 - 4a ≥ 0

4a ≤ 9

a ≤ 2,25

При а = 2,25 парабола будет касаться оси х, и неравенство не будет справедливым, поэтому принимаем a < 2,25

Уравнение будет иметь положительное решение при -1 + √(9 - 4a) > 0

√(9 - 4a) > 1

(9 - 4a) > 1

4а < 8

а < 2

при этом х ≥ -а, т.е должно быть х ≥ -2

Действительно, если а = 0, тогда уравнение х² + х - 2 = 0 имеет дискриминат

D = 1 + 8 = 9 и корни х₁ = (-1+3):2 = 1 и х₂ = (-1-3):2 = -2

Получается, что между -2 и 1 неравенство х² + х - 2 < 0 будет справедливым.

И положительные корни есть.

 

2) x+a ≤ 0

х ≤ -а

-x - a + x² < 2

х² - х - (а + 2) < 0

Рассмотрим функцию: у = х² - х - (а + 2), её график - квадратная парабола веточками вверх. Следовательно, неравенство -x - a + x² < 2 справедливо в интервале между корнями уравнения  х² - х - (а + 2) = 0

D = 1 + 4· (а + 2) = 1 + 4a + 8 = 9 + 4a

Уравнение имеет решение, если D ≥ 0

9 + 4a ≥ 0

4a ≥ -9

a ≥ -2,25

При а = -2,25 парабола будет касаться оси х, и неравенство не будет справедливым, поэтому принимаем a > -2,25

Уравнение будет иметь положительное решение при 1 + √(9 + 4a) > 0

√(9 + 4a) > -1

естественно, что √(9 + 4a) > 0

(9 + 4a) > 0

4а > -9

а > -2,25

при этом х ≤ -а, т.е должно быть х ≤ 2,25

Действительно, если а = 0, тогда уравнение х² - х - 2 = 0 имеет дискриминат

D = 1 + 8 = 9 и корни х₁ = (1+3):2 = 2 и х₂ = (1-3):2 = -1

Получается, что между -1 и 2 неравенство х² - х - 2 < 0 будет справедливым.

Видно, что положительные корни есть.

1) при x+a ≥ 0 неравенство |x+a| + x² < 2 справедливо и имеет положительные корни при а < 2

2) при x+a ≤ 0 неравенство |x+a| + x² < 2 справедливо и имеет положительные корни при а > -2,25

 

4,4(83 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ