Построй пирамиду с вершиной в точке А: АВСДЕ
Правильная четыреугольная пирамида - пирамида основанием которой является квадрат
Диагональ квадрата - СЕ= 4корня из 3
Рассмотрим треугольник СДЕ - прямоугольный равнобедренный ( СД=ДЕ как стороны квадрата) По теореме Пифагора: СД^2 +ДЕ^2 =48
2CД^2=48
CД^2=24
CД = корень из 24 или 2 корня из 6
Построим линейный угол двугранного угла АВСДЕ ( Проведи АK перпендикулярно ВС и КР перпендикулярно ВС тогда угол АКP=60
KP=CД тогда КО ( О точка пересечения диагоналей) = 2корня из 6 деленое на 2 т е корень из 6
через косинус острого угла прямоугольного треугольника
соs АKP= КО / КА
60=КА* Корень из 6
КА= корень из 6 / 0.5
КА=2Корня из 6
Найдем S основания S осн.= 2корня из 6 ^2= 24
КА высота в треугольнике АВС =) Saвc =1/2 ВС * КА = корень из 6 * 2 корня из 6 = 12
Так как пирамида правильная то все ее грани равные треугольники =) S бок пов.= S abc * 4 =12 * 4 =48
S полн. пов. =Sбок пов. + S осн. = 48 +24=72
Да нет, теорией вероятности тут и не пахнет, скорей начала теории множеств, простейшая диаграмма Вина для двух множеств. Как это объяснить 5-класснику? Попробую.
1. Из условия задачи следует, что в классе есть дети, которые
а. Любят только задачи
б. Любят только головоломки
в. Любят задачи и головоломки одновременно
Понятно, что сумма мощностей этих трёх множеств(то есть количество детей, этих 3 групп) равна количеству детей в классе.
Ну а теперь уже можно "решать"
Пусть
К - общее количество детей в классе
Z - любителей задач
Г - любителей головоломок, тогда
Количество детей в группе а Z/3
в группе б Г/4
в группе в с одной стороны 2Z/3, с другой 3Г/4, то есть
2Z/3 = 3Г/4, или
Г = 8Z/9
Отсюда уже видно, что любителей головоломок МЕНЬШЕ, но мы пойдём дальше и найдём конкретные числа.
Найдём количество детей в классе
Z/3 + Г/4 + 2Z/3 = К
Z + 8Z/(4*9) = K
Z = 9К/11, соответственно
Г = 8К/11
Понятно, что К делится на 11, то есть в классе может быть 11,22,33,44 человека(44 не положено, класс нужно делить, но иногда встречаются), таким образом задача имеет 4 следующих решения
К Z Г
11 9 8
22 18 16
33 27 24
44 36 32
Вот и всё, это, наверное, максимально, что можно извлечь из условия.
Успехов!