Для того чтобы найти точки перегиба данной функции найдем первые производные от данной функции по х и по y:
∂Z / ∂x = Z'x = (x^3 + y^3 - 3xy)'= 3x^2 - 3y;
∂Z / ∂y = Z'y = (x^3 + y^3 - 3xy)' = 3y^2 - 3x;
Решим систему из двух уравнений:
3x^2 - 3y = 0;
3y^2 - 3x = 0;
x^2 - y = 0;
y^2 - x = 0;
x^2 = y;
y^2 = x;
x^4 = x;
x(x^3 - 1) = 0;
x^3 = 1; x1 = 0;
x2 = 1^(1 / 3) = 1, подставим в первое уравнение системы:
y1 = x^2 = (1)^2 = 1; y2 = 0;
Точки перегиба (1 ; 1) и (0; 0);
z1 = 1^3 + 1^3 - 3 * 1 * 1 = 1 + 1 - 3 = - 1;
z2 = 0;
ответ: (1; 1; - 1) и (0; 0; 0).
Пошаговое объяснение:
1. 1) 3ln |x| + C
2) ln |x+1| + C
2. 1) (x^4/4 + 2x^2 + x) | (1;2) = 2^4/4 + 2*2^2 + 2 - (1^4/4 + 2*1^2 + 1) = 4 + 8 + 2 - 1/4 - 2 - 1 = 10 3/4
2) e^x | (1;-1) = e^1 - e^(-1) = e - 1/e
3) sin x | (Π/2; Π/6) = sin Π/2 - sin Π/6 = 1 - 1/2 = 1/2
3. 1) Сначала находим пределы интегрирования
-x^2 + x + 6 = 0
-(x-3)(x+2) = 0
Пределы (-2; 3). Интеграл равен
-x^3/3 + x^2/2 + 6x | (-2;3) = -3^3/3 + 3^2/2 + 6*3 - (-(-2)^3/3 + (-2)^2/2 + 6(-2)) =
= -9 + 9/2 + 18 - 8/3 - 2 + 12 = 19 + 11/6 = 20 5/6
X=240/40
X=6
ответ : 6 часов